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ABSTRACT

Motivation: Interpretation of bioinformatics data in terms of cellular

function is a major challenge facing systems biology. This question is

complicated by robust metabolic networks filled with structural

features like parallel pathways and isozymes. Under conditions of

nutrient sufficiency, metabolic networks are well known to be

regulated for thermodynamic efficiency however; efficient biochemical

pathways are anabolically expensive to construct. While parameters

like thermodynamic efficiency have been extensively studied, a

systems-based analysis of anabolic proteome synthesis ‘costs’ and

the cellular function implications of these costs has not been reported.

Results: A cost-benefit analysis of an in silico Escherichia coli network

revealed the relationship between metabolic pathway proteome

synthesis requirements, DNA-coding sequence length, thermody-

namic efficiency and substrate affinity. The results highlight basic

metabolic network design principles. Pathway proteome synthesis

requirements appear to have shaped biochemical network structure

and regulation. Under conditions of nutrient scarcity and other general

stresses, E.coli expresses pathways with relatively inexpensive

proteome synthesis requirements instead of more efficient but also

anabolically more expensive pathways. This evolutionary strategy

provides a cellular function-based explanation for common network

motifs like isozymes and parallel pathways and possibly explains

‘overflow’ metabolisms observed during nutrient scarcity.

Contact: alicia@iastate.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Metabolic network structure is a reflection of ancient environ-
ments. A formal understanding of network design principles

like the cellular function of parallel pathways and isozymes
requires knowledge of evolutionary stresses and the competitive
basis of the organism’s adaptive response. The elemental

composition of life is vastly different than the elemental
composition of the Earth (Sterner and Elser, 2002). Scarce
elemental resources, competition from other organisms

and geochemical cycles are thought to have influenced the
elemental make-up of microbes (Baudouin-Cornu et al., 2001;
Bragg and Hyder, 2004; Giovanni et al., 2005). Evolutionary

success necessitates competitive elemental investment strategies.

For instance, E.coli DNA and amino acid sequences are

reported to have been influenced by sulfur, nitrogen and energy

scarcity (Akashi and Gojobori, 2002; Baudouin-Cornu et al.,

2001, 2004; Bragg and Hyder, 2004).
During conditions of nutrient sufficiency, the role of

thermodynamic efficiency on metabolic regulation has

been well established both theoretically and experimentally

(Carlson and Srienc, 2004a; Lehninger, 1975; Varma

and Palsson, 1993; Varma et al., 1993). Under conditions of

nutrient excess and nutrient scarcity, ‘overflow’ metabolisms,

which deviate from maximum cellular thermodynamic

efficiency, have been described (El-Mansi and Holms, 1989;

Majewski and Domach, 1990; Neijssel et al., 1996; Teixeira

de Mattos and Neijssel, 1997). It has been suggested that

overflow metabolisms during conditions of nutrient excess are

the result of loose substrate uptake control, limited citric acid

cycle flux capacity or limited respiratory chain capacity

(Holms, 1996). The cellular function of an overflow metabolism

during times of nutrient starvation or environmental stress has

been largely overlooked. While maintenance energy require-

ments are well known to lower cellular yields at low growth

rates, the metabolic shift to enzymes with lowered thermo-

dynamic efficiency has been a paradox (Neijssel et al., 1996;

Teixeira de Mattos and Neijssel, 1997). This mystery highlights

a major practical problem facing post-genomic biology, which

is the lack of a formal understanding of network design

principles (Huang, 2000).
Here, a cost-benefit analysis based on process design

principles demonstrates that the E.coli metabolic network

structure and function are a result of evolutionary pressures

for strategic proteomic investment of scarce anabolic resources

as well as for thermodynamic efficiency. The signifi-

cance of investment costs, which here are defined as the

elemental requirements to construct a functional metabolic

pathway, has not been previously identified as an important

selection pressure. Earlier network studies of E.coli growth

focused only parameters like thermodynamic efficiency

(for instance: Carlson and Srienc 2004a; Varma and Palsson,

1993). This study explicitly elucidates the relationships between

metabolic pathway proteome synthesis requirements, pathway

thermodynamic efficiency, enzyme-substrate affinity and

DNA-coding sequence length for a network comprised of

tens of millions of unique, mathematically defined pathways.
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2 METHODS

2.1 Economic analysis of metabolic pathways

The trade-off between capital investment costs and operating costs

is a classic factory design challenge. As a polarized example, a factory

assembly line can be constructed with expensive, automated, energy

efficient equipment representing a ‘high investment cost-low operating

cost’ strategy or an assembly line can be constructed with cheap,

labor intensive, energy inefficient equipment representing a ‘low

investment cost-high operating cost’ strategy. Optimal resolution

of these trade-offs is typically determined through a multidimensional

analysis of location-specific parameters like regional tax laws, labor

costs and energy prices (Peters and Timmerhaus, 1980). Robust

biochemical networks with numerous parallel pathways and isozymes

represent an array of investment opportunities. Analogous to factory

assembly lines, metabolic pathways can be constructed using different

combinations of enzymes resulting in pathways with very different

properties. It is hypothesized that the optimal resolution of the

metabolic trade-off between pathway investment costs, which are

equivalent to proteome synthesis requirements, and pathway operating

costs, which reflect thermodynamic efficiency, can be resolved through

multidimensional analysis of parameters like growth rate and the

availability of anabolic and catabolic resources.

The E.coli central metabolism model is presented in Table S1

(Supplementary Material). The reaction stoichiometry, protein assign-

ment for each reaction, enzyme subunit stoichiometry, and the carbon,

nitrogen, sulfur, amino acid count and DNA-coding sequence require-

ments for each protein are listed. Enzyme assignments and subunit

stoichiometries are based on data from EcoCyc, EcoGene and current

literature (Kesseler et al., 2005; Rudd, 2000).

The metabolism model considers glucose as the sole energy source

while glucose and CO2 are potential carbon sources. Seven different

E.coli biomass compositions are considered. The biomass stoichiome-

tries are listed in Table S2. The macromolecular composition can be

found in Carlson and Srienc (2004a). The presented biomass composi-

tions are used to test the robustness of the analysis to different cellular

compositions. The biomass synthesis expression is based on the theory

of Neidhardt et al. (1990) and considers the metabolite drain off the

central metabolism. The individual enzymes involved in these biosyn-

thetic reactions are not considered. The seven biomass expressions are

normalized with respect to the ATP requirements so each doubling,

time-dependent expression represents a different number of biomass

Cmoles as listed in Table S2. These expressions only consider

biosynthesis and do not include maintenance energy expenditures.

The in silico representation of the E.coli central metabolism was

decomposed into its simplest, biologically relevant reaction sequences

using elementary flux mode analysis (Schuster et al., 1994, 2000; Stelling

et al., 2002). The elementary flux modes were identified using

FluxAnalyzer (version 5.2) (Klamt et al., 2003). A flux mode is a

mathematically defined biochemical pathway. A typical flux mode

connects the conversion of substrates into products while balancing

system carbon, redox and ATP fluxes. Considering a single growth rate

and therefore a single biomass composition, �3.4 million unique, flux

modes were identified.

Flux modes are comprised of a series of metabolite membrane

transport steps and chemical reactions. Each enzyme-catalyzed event

requires an investment of anabolic resources for enzyme synthesis. The

flux mode investment costs were calculated by translating the modes,

which synthesize either biomass or ATP as a product, into sets of

utilized enzymes. Investment costs were not calculated for other flux

modes including futile cycles. These enzymes sets represent theoretical

proteomes. Five different investment costs were calculated for each

enzyme set. The atomic carbon, nitrogen and sulfur as well as the total

number of amino acids required to synthesize each enzyme set were

tabulated using proteomic databases (see Supplementary Material). The

total number of amino acids is considered in addition to the three

elements because this parameter can be correlated to cellular

phosphorus requirements and energy charge (see Supplementary

Material). The fifth tabulated cost was the number of DNA nucleotides

required to code each enzyme set.

The atomic carbon, nitrogen, sulfur and amino acid investment costs

considered enzyme expression levels. Pathway velocity was assumed to

follow saturation-type kinetics analogous to enzymatic Michaelis–

Menten kinetics and cellular Monod kinetics (Teixeira de Mattos and

Neijssel, 1997). For low and high substrate concentrations, the kinetic

expression can be simplified with either the first order or the zeroth

order approximation, respectively. The presented study considers only

environmental conditions that can be described by the first order kinetic

approximation ([S]�Km) where 05���max. See Supplementary

Material for a formal treatment of investment cost assumptions. The

case for transporter substrate affinity is discussed in a later section. The

zeroth order kinetics case will be presented elsewhere.

Flux mode operating costs were defined as the expenditure of

substrate, either glucose or oxygen, to synthesize either one Cmole of

biomass or one mole of ATP. Glucose was the sole considered energy

source, so all flux modes that synthesized either biomass or ATP as a

product consumed glucose. Operating costs were not calculated for

futile cycles or pathways that did not produce either biomass or ATP.

The operating costs were determined for the appropriate flux modes

using a MATLAB subroutine which calculated the ratio of the Cmoles

of substrate consumed to either the Cmoles of biomass produced or the

moles of ATP produced. The biomass operating cost is equivalent to

the inverse biomass yield and reflects the thermodynamic efficiency of

the pathway (Carlson and Srienc, 2004a).

3 RESULTS

3.1 Multidimensional costs analysis

The investment and operating costs for each flux mode

were plotted as coordinates in a multidimensional space.

The coordinate magnitudes reflect fundamental flux mode
properties. For instance, Figure 1a illustrates the multidimen-

sional relationship between nitrogen investment cost, glucose

operating cost and oxygen operating cost for flux modes

synthesizing biomass. Each sphere represents the coordinates of
a unique flux mode producing 1 Cmole of biomass. Earlier

network studies of E.coli growth analyzed oxygen and glucose

fluxes that maximized thermodynamic efficiency (for instance:

Carlson and Srienc, 2004a; Varma and Palsson, 1993).
Figure 1a graphically illustrates how the current study

adds additional dimensions of data to the previous work.

Figure 1b–d highlights regions of interest in the 2-dimensional

glucose operating cost/nitrogen investment cost plane. The data
is broken into three separate plots, each with a different

scale, to avoid compression of the high investment cost data

points. If factory design principles are relevant to evolutionary

design strategies, low costs are desirable. Flux modes with
coordinates lying near the axes represent low-cost strategies.

Considering Figure 1b, the flux modes labeled ‘1’ and ‘2’ lie

nearest the ordinate and have the smallest glucose operating

costs and therefore convert glucose into biomass with the

highest efficiency. In Figure 1d, the flux mode labeled ‘12’ lies
closest to the abscissa and has the smallest nitrogen investment

cost. Between the minimal operating cost and the minimal

investment cost strategies is a continuous set of strategies
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defined by a line segment envelope that minimizes the
combined operating and investment costs. For the presented

example, 12 unique flux modes are required to most economi-
cally span the possibilities between the minimal operating cost

and the minimal investment cost strategies (see Table S5 in the
Supplementary Material for an explicit listing of the 12 flux

modes along the minimization envelope). The continuous
‘minimization envelope’ is explicitly defined by non-negative

linear combinations of the flux modes labeled 1–12. Flux modes
with coordinates above the minimization envelope have
higher investment or higher operating costs than the strategies

on the minimization envelope (Carlson and Srienc, 2004a).

Additional orthogonal, 2-dimensional projections can be found
in the Supplementary Material.

Figure 2 highlights shifts in enzyme usage as a function of
biomass composition, four investment costs and glucose

operating costs. Isozymes and parallel pathway enzymes are
of special interest. The enzyme patterns are from flux

modes lying on their respective minimization envelope. The
twelve flux modes which define the minimization envelope in
Figure 1b–d are labeled in the nitrogen investment cost section

for a 200-min doubling time. Each rectangle represents a single
flux mode along the minimization envelope. The same

minimization envelope flux modes are analyzed for usage of
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Fig. 1. (a) Multidimensional relationship between E.coli metabolic pathway properties. Metabolic pathway nitrogen investment cost, glucose

operating cost and oxygen operating cost were plotted as coordinates in a multidimensional space. Each sphere represents the coordinates of a unique

mathematically defined metabolic pathway that produces biomass. The spatial relationships illustrate fundamental pathway properties related to the

proteome synthesis requirements (investment cost) and thermodynamic efficiency (operating cost). The nitrogen investment cost axis has units of

nitrogen atoms required per metabolic pathway with values ranging from 70 000 to 170 000 nitrogen atoms per pathway. The oxygen operating cost

axis has units of moles O2 consumed per Cmole biomass synthesized with values ranging from 0 to 1.75 moles O2 per Cmole biomass. The glucose

operating cost axis has units of Cmoles glucose consumed per Cmole of biomass synthesized with values ranging from 1 to 3.3 Cmole glucose per

Cmole biomass. Approximately 800 000 biomass producing modes from the 200-min doubling time simulation are shown in the plot. The data set is

truncated to highlight biochemical pathways with coordinates near the origin. (b–d) Minimization envelope for the glucose operating cost and

nitrogen investment cost plane. Twelve unique biochemical pathways labeled, 1 through 12, are required to most economically span the metabolic

space between the minimal operating cost (pathway No. 1) and the minimal investment cost (pathway No. 12) strategies. The scale of the

axes changes between Figure 1b, c, and d to highlight the pathways of interest and to avoid compression of the pathway data points. See text

for more detail. The pathways are color-coded for enzyme usage patterns related to the glucose transport system (PtsG, GalP, Mgl) and the

conversion of pyruvate to acetyl-CoA. (PDHc, Pfl): red¼PtsGþPDHc, gray¼PtsGþPfl, green¼GalPþPfl, black¼GalP no PDHc or Pfl,

orange¼MglþPDHc, blue¼GalPþPDHc, yellow¼MglþPfl.
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five different enzyme groupings. Data from seven biomass

compositions are presented. The total number of flux

modes along each minimization envelope varies between some

biomass compositions. This was often due to a linear

combination of flux modes which have equal and opposite

fluxes in the pentose phosphate pathway reactions. When these

flux modes are combined, the reaction flux sums to zero

creating a situation where the associated enzyme is not

required, creating a unique flux mode (Vijayasankaran et al.,

2005). The pentose phosphate pathway fluxes vary depending

on the biomass composition.
Flux modes which minimize operating costs typically utilize

enzymes with high thermodynamic efficiencies but also require

relatively high anabolic resource investments. Flux modes in

Figure 2 minimizing operating costs utilize the PEP-dependent

PTS glucose transporter, the Embden–Meyerhof–Parnas

glycolysis pathway, the pyruvate dehydrogenase complex

(PDHc), cyclic TCA cycle fluxes including the resource

intensive alpha–ketoglutarate dehydrogenase complex, the

soluble transhydrogenase enzyme (UdhA) and the high yielding

Nuo-cytochrome o electron transport chain. These modes do

not secrete any partially oxidized by-products. The majority of

the high investment cost-low operating cost strategy predictions

have been experimentally established with nutrient sufficient

chemostat growth (Alexeeva et al., 2000; Carlson and Srienc,

2004b; Iuchi and Lin, 1991; Sauer et al., 2004; Varma et al.,

1993). When substrate uptake is limited to a constant rate, like

in a chemostat, maximizing yields, which is equivalent to

minimizing operating costs, has been recognized as a compet-

itive strategy (Menlendez-Hevia et al., 1997).
Enzymes associated with minimal investment cost strategies

typically have relatively low thermodynamic yields but

the enzymes also have relatively small anabolic resource

investment requirements. These flux modes utilize the galactose
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Fig. 2. Central metabolism enzyme usage patterns as a function of biomass composition, carbon, nitrogen, sulfur, and amino acid investment costs,

and glucose operating cost. The data is divided into four sections with each section representing the results from a different investment cost analyses.

Each colored rectangle represents a single metabolic pathway along the respective investment cost–glucose operating cost minimization envelope. The

minimization envelope pathways were analyzed for five different sets of enzymes labeled Group 1 through Group 5. As an example, the twelve

biochemical pathways defining the minimization envelope in Figure 1b–d are labeled in the nitrogen investment cost section. These same twelve

pathways were analyzed for the five different groupings of enzymes. For each group, moving down the column minimizes metabolic pathway

investment cost while moving up each column minimizes metabolic pathway glucose operating cost. Biomass composition changes from left to right.

Compositions are consistent with different cell doubling time biomass compositions expressed as minutes. The color key for each group of enzyme

data is given on the right. Group 1 examines glucose transporters and kinases (PtsG, Mgl/Glk, GalP/Glk) and the pyruvate dehydrogenase complex

(PDHc) and pyruvate formate lyase (Pfl). Group 2 analyzes use of the soluble (UdhA) and membrane-bound (PntAB) transhydrogenase enzymes.

Group 3 analyzes two NADH dehydrogenase enzymes (Nuo and Ndh) and the cytochrome o and d systems (Cyo and Cyd). Group 4 analyzes the use

of the ATPase enzyme complex, the aerobic formate dehydrogenase (Fdo) and acetate kinase (AckA). Group 5 examines use of the TCA cycle alpha–

ketoglutarate dehydrogenase complex (��KGDc), the glyoxylate shunt isocitrate lyase enzyme (AceA), the oxidative branch of the pentose

phosphate pathway (Zwf) and the Entner–Doudoroff pathway (Eda).
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permease/glucose kinase (GalP/GlK) glucose transport and
phosphorylation system, the Entner–Doudoroff pathway, the

pyruvate formate lyase enzyme (Pfl), branched oxidative and
reductive TCA cycle fluxes, the membrane-bound transhydro-

genase (PntAB), and the lower proton motive force yielding
Ndh-cytochrome d electron transport chain. These flux modes

secrete partially oxidized products like formate and acetate.
The majority of these enzyme usage patterns have been

reported for experimental conditions with low anabolic
resource availability or during nutrient starvation (Fischer

and Sauer, 2003; Murray and Conway, 2005; Nyström and
Gustavsson, 1998; Nyström and Neidhardt, 1993; Nyström

et al., 1996). Another common experimental observation
consistent with the low investment cost predictions is the

reduced substrate yields reported during anabolic resource
limitation (Teixeira de Mattos and Neijssel, 1997). Under

conditions of resource scarcity, construction of a functional,
inexpensive pathway seems to take precedence over thermo-

dynamic efficiency. The inexpensive, less efficient pathways
have properties analogous to the observed ‘overflow’ metabo-

lism. In addition to permitting higher fluxes, the ‘overflow’
metabolism requires less resources to synthesize the associated

pathway enzymes (Teixeira de Mattos and Neijssel, 1997).
Additional references for proteomic studies supporting the

predictions can be found in the Supplementary Material.
From the minimal operating cost scenario to the minimal

investment cost scenario, the glucose operating costs increase

by a factor of about 10 while the atomic investment costs
decrease by a factor of �3.

3.2 General stress responses

The investment cost scenarios in Figure 2 predict general
nutrient stress responses. Enzyme usage patterns for the four

investment costs are all very similar. Escherichia coli possesses a
family of general stress regulator proteins known as the

universal stress proteins. The universal stress proteins are
expressed during starvation for carbon, nitrogen, sulfate,

phosphate and amino acids as well as during exposure to
heat, oxidants, metals, ethanol, antibiotics and other stresses

(Nachin et al., 2005). The enzymatic patterns of the low
investment cost-high operating cost strategies are consistent

with the reported universal stress protein mediated enzyme
usage (Nachin et al., 2005; Nyström and Gustavsson, 1998;

Nyström and Neidhardt, 1993; Nyström et al., 1996). Many
bacteria are considered homeostatically regulated. The biomass

carbon to nitrogen ratio (C:N) is nearly constant regardless of
substrate C:N ratio (Sterner and Elser, 2002). Therefore, a

limitation of either carbon or nitrogen requires a subsequent
down shift in the investment of the other element. This is

consistent with the present study. The flux mode enzyme C:N
ratio as well as the C:S ratio for the minimization envelope are

relatively constant regardless of a minimal operating cost or a
minimal investment cost strategy (see Supplementary Material).

3.3 Evolutionary trade-off values

Nutrient-specific stress responses often involve expression of
high affinity enzymes (Teixeira de Mattos and Neijssel, 1997).

The high affinity E.coli glucose transporter (Mgl) and ammonia

assimilation pathway (GOGAT) are two examples. These

enzymes have both higher investment costs and higher

operating costs than comparable parallel pathways and there-

fore are not predicted with the presented methodology.

However, competitive evolutionary pressures have selected the

use of these enzymes suggesting that under some circumstances,

the added investment and operating costs are off-set by

advantages of high substrate affinity. The relationship between

investment costs, operating costs and enzyme affinity was

analyzed to quantify the advantage of high substrate affinity in

terms of investment costs. The operating cost and investment

cost differences between the three glucose uptake systems are

shown in Figure 3a. The investment cost difference (ordinate-

axis) between the lower affinity GalP system and the higher

affinity Mgl system increases as the flux mode carbon

investment is minimized. The GalP system has a Km of

�10�M while the Mgl system Km is estimated to be less than

1�M (Gosset, 2005; Manche et al., 1999). Increasing glucose

affinity by an order of magnitude can translate into an

investment cost of an additional �15 000 carbon atoms per

flux mode. As a comparison, the PtsG system has a Km of

�5�M (Gosset, 2005). Ammonia assimilation affinity was also

examined (Fig. 3b). The glutamate dehydrogenase (Gdh)

ammonia assimilation path has a Km of �3mM while the

glutamine synthetase-glutamate synthase (GOGAT) ammonia

assimilation system has a Km of 50.2mM (Helling, 1994).

Improving the ammonia affinity by approximately one order of

magnitude can translate into an additional investment cost of

�7500 nitrogen atoms per flux mode. High affinity enzymes,

would in theory, permit higher metabolite fluxes than low

affinity enzymes under the same low substrate concentration

conditions which may justify the additional investment and

operating costs.

4 DISCUSSION

Thermodynamically efficient metabolic pathways require

more resources to construct than less efficient pathways.

The difference in metabolic pathway construction requirements

seems to have resulted in regulation patterns that favor

less expensive metabolic pathways during nutrient scarcity.

A functional, inexpensive pathway seems to take precedence

over thermodynamic efficiency during nutrient stress resulting

in a lower yielding energy metabolism with properties

analogous to an ‘overflow’ metabolism.
The current study supports the widely held view that E.coli

evolved under nutrient feast and famine conditions

(Koch, 1971). Escherichia coli can toggle between parallel

pathways with high protein investment cost-low operating cost

strategies or low protein investment cost-high operating cost

strategies with minimal enzyme regulation to adapt to catabolic

or anabolic nutrient ‘feasts or famines’. Velicer and Lenski

(1999) studied E.coli fitness after consecutive rounds of nutrient

abundance and nutrient scarcity. Strain fitness under nutrient

abundance did not preclude its fitness under nutrient scarcity

and vice versa. Evolutionary pressures have created an

organism that carries the resource burden of numerous genetic

instructions and numerous regulatory systems but has the

R.P.Carlson
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advantage of being able to compete under a wide variety of

nutritional environments.
Previous proteomic studies of central metabolism adapta-

tions to starvation conditions suggest the responses are

regulated at the protein synthesis level (Nyström and
Gustavsson, 1998). Two major regulators in this starvation

metabolic shift are the universal stress protein UspA and ArcA.

ArcA is a well-studied regulator associated with the absence of
an external electron acceptor and explains the numerous
similarities between starvation and anaerobiosis enzyme usage

patterns (Alexeeva et al., 2000; Nyström and Gustavsson, 1998;
Nyström and Neidhardt, 1993). The presented, theoretical
study also suggests that the nutrient scarcity response would be

regulated at the level of protein translation and not necessarily
enzyme activity. Synthesizing a protein that is inactive would
represent a non-performing investment of resources. While

there are cases of non-functioning protein subunits being
synthesized, likely as an investment which prepares the cell for
rapid changes in environmental conditions, these protein

subunits are likely expressed at low levels especially during
starvation conditions (Alexeeva et al., 2000).
There is much interest in minimal genome size, the minimal

number of genes required for life, and the optimization of

industrial organisms (Giovanni et al., 2005; Glass et al., 2006).
Minimal genomes are not likely to carry many, if any, isozymes
or parallel pathways. A theoretical minimal genome would only

carry instructions for a limited number of metabolic strategies
and a limited number of regulatory systems. In the present
study, pathways that minimize investment costs require �66%

fewer amino acids as compared to the minimal operating cost
strategies. Not surprising, minimizing the number of amino
acids also reduces the size of the DNA-coding sequences

(Fig. S1 in Supplementary Material). However, there is not a
simple linear correlation between the number of flux mode
amino acids and the coding sequence length due to multimeric

enzyme structure. The minimal amino acid investment strategy
requires around 33% fewer DNA-coding nucleotides than the
minimal operating cost scenario. Minimizing genomes raises an

interesting evolutionary consideration. Primitive life likely
started with a single metabolic strategy and only evolved
additional strategies with time. The central metabolic portal of

the E.coli minimal investment cost strategies is the Entner–
Doudoroff pathway (Fig. 2). This pathway along with features
like the branched use of the TCA cycle enzymes, the lack of

oxidative phosphorylation, and absence of the PTS glucose
transport system have all been cited as examples of a primitive
paleometabolism (Menlendez-Hevia et al., 1997; Romano and

Saier, 1992). This could suggest that E.coli has evolved toward
strategies that minimize operating costs, however, at least key
portions of primitive metabolic pathways have been retained

because they offer competitive advantages during famines or
other environmental stresses.
The current study considers 134 E.coli genes. For a single

biomass composition, these genes can be arranged into
3.4þmillion unique, mathematically defined biochemical path-
ways. Genome scale analysis will require improved computer

memory architecture like a 64-bit system or more efficient
software algorithms. The presented methodology applies
cellular function to a metabolic network and then identifies

the corresponding patterns of enzyme/gene usage. The
approach provides a theoretical basis for studying critical
network properties like the possible function of isozymes and

parallel pathways. A comparison of low investment cost
strategies, where proteome investment is minimized, with
oxygen-limited, low operating cost strategies, where thermo-

dynamic yield is maximized for the available oxygen, illustrates
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Fig. 3. Investment and operating costs associated with high affinity

enzyme systems. The evolutionary trade-off between nutrient invest-

ment costs, pathway-operating costs and enzyme affinity was explored

using multidimensional analysis. (a) The glucose operating cost and

carbon investment cost differences between three glucose uptake

systems. Each line represents the most efficient use of a single glucose

transport system. Note that the actual minimization envelope transi-

tions from the PtsG system to the GalP system at a carbon investment

cost of �290 000 carbon atoms per pathway. The investment cost

difference was analyzed for the lower affinity GalP system

(Km¼�10�M, solid triangles), medium affinity PtsG system

(Km¼�5�M, open circles), and the higher affinity Mgl system (Km

estimated less than 1�M, filled circles). Increasing glucose affinity by

an order of magnitude can require an investment of an additional

�15 000 carbon atoms per biochemical pathway. (b) The glutamate

dehydrogenase (Gdh) ammonia assimilation path has a Km of �3mM

(filled circles) while the glutamine synthetase-glutamate synthase

(GOGAT) ammonia assimilation system has a Km50.2mM (open

circles). Improving the ammonia affinity by approximately one order of

magnitude can require an additional investment of �7500 nitrogen

atoms per metabolic pathway. Data is truncated to highlight regions of

interest. The glucose operating cost is expressed as the Cmoles of

glucose consumed per Cmole of biomass synthesized. The carbon

investment cost is the atomic carbon requirement to synthesize the

pathway enzyme set. The nitrogen investment cost is the atomic

nitrogen requirement to synthesize the pathway enzyme set.
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how different environmental stresses can have similar enzy-

matic usage patterns. For instance, competitive strategies for

both environmental conditions utilize branched TCA cycle

fluxes, the pyruvate formate-lyase enzyme, and both secrete

partially oxidized by-products like acetate and formate

(Carlson and Srienc, 2004b). However, the current study

suggests there are metabolic adaptation differences between

the two stresses. The Entner–Doudoroff pathway is used with

low investment cost strategies instead of the Embden–

Meyerhof–Parnas glycolysis pathway which is used with

oxygen-limited, low operating cost strategies. This slight

difference highlights the challenges facing approaches that

first generate experimental patterns of enzyme/gene usage and

then try to identify cellular function.
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