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Molecular-level tradeoffs and metabolic adaptation to
simultaneous stressors
Ross P Carlson and Reed L Taffs

Life is a dynamic process driven by the complex interplay

between physical constraints and selection pressures, ranging

from nutrient limitation to inhibitory substances to predators.

These stressors are not mutually exclusive; microbes have

faced concurrent challenges for eons. Genome-enabled

systems biology approaches are adapting economic and

ecological concepts like tradeoff curves and strategic resource

allocation theory to analyze metabolic adaptations to

simultaneous stressors. These methodologies can accurately

describe and predict metabolic adaptations to concurrent

stresses by considering the tradeoff between investment of

limiting resources into enzymatic machinery and the resulting

cellular function. The approaches represent promising links

between computational biology and well-established

economic and ecological methodologies for analyzing the

interplay between physical constraints and microbial fitness.
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Mathematical modeling of microbial
responses to environment
Microbes are complex systems; mathematical expressions

have been used to predict and interpret these dynamic

systems for more than a century (e.g. [1–3]). Microbial

growth expressions were soon combined into systems of

differential equations to consider a multitude of stressors

including combinations of limiting substrates, competi-

tors, predators, and the presence of inhibitors [4,5].

Unfortunately, kinetic models are parameter heavy, in

terms of both number and sensitivity. Literature values

for enzyme kinetic parameters often vary over several

orders of magnitude [6�]. Full parameter evaluation for

large, biologically relevant networks is currently prohibi-

tive and limits the ability of these modeling approaches to

take full advantage of the omics data revolution. How-

ever, kinetic models are still popular, and progress con-

tinues in the development of innovative parameter

approximations [7�,8,9��,10�,11�].

Alternative mathematical modeling methods circumvent

the requirement for large condition-sensitive parameter

sets. One particularly successful technique is stoichio-

metric modeling, which extracts systemic information

from molecular-level network structure and conservation

relationships. Stoichiometry-based methods can utilize a

variety of omics datasets and thus occupy a practical

position in modern biology. Stoichiometric modeling

can be divided into three major classifications: con-

straint-based linear programming, often termed flux bal-

ance analysis (FBA); metabolic flux analysis (MFA); and

metabolic pathway analysis, frequently called elementary

flux mode analysis (EFMA). All three methods define a

hyper-dimensional solution space containing every bio-

logically meaningful steady-state metabolism for a

defined network model. The three methods differ in

how they select particular metabolic flux distributions

from this space. Articles discussing the details of stoichio-

metric modeling approaches can be found elsewhere (e.g.

[12–15]). Stoichiometric models typically produce steady-

state approximations of intracellular fluxes, limiting

dynamic analysis. However, techniques for approximat-

ing dynamic responses by sequentially identifying flux

distributions as a function of changing environments have

been developed and applied [16��,17�].

Stoichiometric analysis of single stress
adaptations
The functional properties of metabolic systems are the

product of evolutionary processes and are competitive

given the organism’s life history. Therefore, assumptions

about competitive cellular behavior are used to select

solutions to stoichiometry-based models. A widely uti-

lized criterion presumes that microorganisms maximize

biomass yield (microbe production from a fixed quantity

of substrate). This criterion is convenient, simple, and

successfully describes microbial behavior under certain

conditions; one such circumstance is Escherichia coli grown

in glucose-limited chemostats at modest dilution rates

[18��]. Biomass yield maximization sometimes (e.g. batch

growth [19��]) produces inadequate descriptions, imply-

ing that alternative metabolic strategies can be ecologi-

cally competitive. Game-theory-based interpretations are

available for a variety of such cases [20]. Numerous

criteria used in stoichiometric models are compared to
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experimental data in [19��]; a summary of kinetic meta-

bolic modeling criteria can be found in [21].

Economic considerations and metabolic
strategies
Resource availability limits growth in most environments

and is an important component of animal immune sys-

tems, commonly referred to as nutritional immunity

[22��,23]. This has driven microbial evolution toward

strategies that allocate limiting resources to different

metabolic isozymes and alternative pathways in a manner

that favors fitness [24�]. Standard economics approaches

such as resource allocation theory and tradeoff analysis

can be used to quantitatively compare the huge number

of potential metabolic resource investment schemes

[25��,26,27�,28,29].

Stoichiometric modeling criteria which account for

resource investment have identified metabolic flux distri-

butions which accurately describe microbial behaviors not

covered by a maximum biomass yield strategy. For

instance, criteria involving the minimization of total

cellular metabolic fluxes are proxies for minimizing

resource investment into enzymes [19��,30]. This con-

sideration is also implied by the criterion of maximizing

growth while constraining enzyme-occupied volume

[31��]. These two criteria are mathematically related,

and it has been reported that both identify the same flux

distribution [32�]. Explicit consideration of resource

investment into metabolic strategies has been performed

using EFMA [25��,33��]. Resource requirements for

enzymes were compiled from subunit compositions,

protein sequences, and amino acid elemental formulae.

The study enumerated resource allocations for every

biologically feasible pathway through a metabolic net-

work. These investment requirements were then conca-

tenated with biomass yields, a metric for metabolic

efficiency. This approach identified cost-benefit tradeoff

curves representing metabolic flux distributions optimal

for any combination of two environmental stresses. The

tradeoff curves highlight a central tenet of economics:

resource value changes as a function of abundance. The

tradeoff curve slope represents the exchange ratio be-

tween two resources. At either extreme, optimal use of

the scarce resource becomes significantly more expensive

in terms of the second resource (Figure 1). A discussion of

possible relationships between relative enzyme abun-

dance and metabolite flux can be found in [25��,33��].

A number of recent studies corroborate the concept of

strategic resource investment into enzymes. An E. coli
metabolomics study reported that the majority of

measured metabolite concentrations exceeded half-satur-

ation constants (Km) for the appropriate substrate–
enzyme pairs [34�]. Operating enzymes near max maxi-

mize flux per unit of invested resource. Substrate–
enzyme pairs not falling into this category were proposed

to be important for controlling flux directionality and

magnitude. This control could be modulated by altering

cellular investment into specific metabolite pools. Metab-

olites are a resource investment, although they represent

only a small fraction of the total cellular contents: 5% of

typical E. coli on a dry mass basis while protein represents

50–70% [35]. Results from kinetic simulations suggest

network topology and kinetic parameters are sufficient to

maintain cellular goals when enzyme concentrations are

randomly perturbed [30], indicating that changes in

metabolite pools can buffer proteomic disturbances. In

addition, a recent experimental study demonstrated that

changes in metabolite pools could support functional

homeostasis when enzyme levels were experimentally

altered in yeast central carbon metabolism [36��]. Main-

taining competitive flux distributions through changes in

metabolite concentrations requires little or no active

alteration of enzyme levels, resulting in significant

resource investment savings.

Resource allocations and simultaneous
stresses
Life is inherently competitive and stressors are not

mutually exclusive. Microbes cope simultaneously with

an assortment of constraints [37]. Economic and ecologi-

cal theory provides a framework for predicting and inter-

preting microbial adaptations to multiple stresses

[28,38�,39]. When subjected to multiple pressures, cells

must allocate finite resources to different subsystems in a

proportion that improves fitness; the systems biology

challenge is to determine how these allocations respond

to different demands. While dynamic modeling methods

have considered simultaneous pressures for decades

[4,26], such considerations are just beginning to be

addressed via genome-enabled molecular-level modeling

approaches.

A stoichiometric modeling study considered metabolic

adaptation to multiple stresses [33��]. The study ident-

ified an ecologically relevant set of metabolic pathways

that optimize tradeoffs between resource investment and

functional benefit. Non-negative least squares regression

assembled these pathways to describe metabolic fluxes

measured under different growth conditions (from [19��]).
The aggregate stress response, comprised of linear com-

binations of three to four distinct pathways, represents a

competitive allocation of resources, with the relative

weight for each pathway theoretically proportional to

the degree of corresponding stress. The approach

described the fluxomic data more accurately than any

reported single metabolic optimization criterion (typically

based on a single stress) [19��,33��].

The study supported the observations that not all carbon-

limited chemostat growth is equal and that carbon-limited

chemostat growth does not necessarily equate to a single

culturing stress. At high growth rates, oxygen transfer is
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known to constrain metabolic function [18��], but at low

growth rates there are additional slow-growth-associated

stresses. For instance, it is metabolically more expensive

to synthesize biomass at low growth rates because of

increased cellular protein fraction and the relative

increase in maintenance processes (e.g. macromolecular

turnover) [40]. At slow-growth rates, intracellular fluxes

are best described by a combination of stress responses

that reduce infrastructure investment, not by maximal

biomass yield [33��]. Tradeoff curves suggest that

resource exchange ratios at low nutrient availability

encourage microbial metabolisms to adopt cheaper-to-

build but less efficient pathways. This is supported by

experimental data. For instance, E. coli expresses the

Entner–Doudoroff (ED) pathway under carbon and phos-

phorus starvation [41]. The ED pathway requires fewer

resources to synthesize than the Embden–Meyerhof–
Parnas (EMP) glycolysis pathway, although it produces

less ATP per glucose (Figure 2). These shifts toward

simpler, less resource intensive, enzymatic infrastructure

can result in an overflow metabolism where partially

oxidized metabolites like acetate are secreted. This par-

tial oxidation represents a competitive strategy under

nutrient scarcity, because it obviates synthesis of resource

intensive citric acid cycle enzymes like a-ketoglutarate

dehydrogenase.

Stress adaptations and opportunity costs
Microbial responses to a variety of stressors can be quan-

tified using the economic concept of opportunity costs. As

an example of opportunity costs, E. coli shifts from the

phosphotransferase system (Km � 5 mm) to a higher affi-

nity ABC transporter (Km < 1 mm) coupled with glucose

kinase under glucose-scarce conditions [42]. The high

affinity system requires more resources to assemble and

operate (Figure 3); however, these costs are offset by

improved glucose uptake at low external concentrations.

The opportunity cost associated with this benefit can be

672 Tissue, cell and pathway engineering

Figure 1

Illustration of a metabolic tradeoff curve. Each circle represents a genetically independent and biologically meaningful steady-state growth metabolism

(elementary flux mode) for E. coli. The position of each circle represents the metabolism’s resource investment (iron per elementary mode, y-axis) and

operational efficiency (Cmoles glucose consumed per Cmole biomass produced, x-axis). The tradeoff curve, highlighted in red, represents the optimal

relationship between enzymatic iron investment and the biomass production efficiency from glucose. From left to right, the slope of the tradeoff curve

decreases, indicating a more severe penalty to operation costs (Cmole glucose per Cmole biomass) as limitations on iron investment increase. The

large plot scale permits approximately 10.3 million of the 10.7 million possible biomass-producing pathways to be shown; the insert shows

approximately 1 million pathways. Simulation data included maintenance energy requirements for a 60 min doubling time.

Current Opinion in Biotechnology 2010, 21:670–676 www.sciencedirect.com
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quantified from tradeoff curves [25��]. This framework for

understanding adaptation to multiple limiting resources

easily accommodates other simultaneous stresses (e.g.

osmotic, oxidative, or toxic). Investment of resources

toward fitness-enhancing functions, including the pro-

duction of compatible solutes, synthesis and operation

of efflux pumps, or the reduction of reactive oxygen

species and toxic metals, can be expressed as a loss in

the production of other cellular products like biomass or

ATP. The magnitude of the opportunity cost depends on

the degree of stress and the current metabolic response to

nutrient conditions.

Biodiversity, network robustness, and the
Darwinian demon
All life faces physical, physiological, energetic, and

temporal constraints. Resources allocated to one capacity

cannot be allocated elsewhere. The resulting tradeoffs

have been used to explain biodiversity on both an evol-

utionary and a dynamic basis [43,44�]. Ecologists often

invoke a thought experiment to test the null hypothesis of

free specialization. The exercise proposes the existence

of a ‘superspecies’, termed a Darwinian demon, uncon-

strained by tradeoffs: living long, reproducing quickly and

copiously, and maximizing all aspects of fitness simul-

taneously [45]. An animalcule possessing such superior

properties would obviously outcompete other microbes,

leading to monoculture. Given extant biodiversity,

physical constraints must be associated with tradeoffs

between fitness strategies and ecological functions; differ-

ences in community composition across habitats further

support this idea.

The Darwinian demon offers an interesting perspective

on a common biochemical network property, metabolic

robustness. A popular definition of metabolic robustness

is phenotypic buffering against genetic mutations or

environmental perturbations [46]. Two sources of robust-

ness are gene duplication and pathway redundancy [47].

The relative importance of these two mechanisms

appears to vary by species; gene duplication is less

important in microbes having greater metabolic versatility

[48,49]. Pathway redundancies can be systematically

explored through synthetic genetic interactions, both in
silico [49–51,52��] and in vitro (e.g. [53,54�]). It has been

observed that metabolic robustness facilitates evolution-

ary innovation, allowing mutations to accumulate without

immediate consequences [55�], but the strong conserva-

tion of metabolic alternatives requires further expla-

nation. In ecology, tradeoffs are credited with ‘taming’

the Darwinian demon, permitting the coexistence of

multiple species; it is proposed here that tradeoffs at a

Metabolic adaptation to simultaneous stressors Carlson and Taffs 673

Figure 2

Comparison of resource investment requirements and metabolic efficiency of two glycolysis pathways. (a) Schematic diagram of biochemical

pathways converting glucose-6-P to 2 pyruvate molecules. Nodes represent metabolites, dashed lines represent enzymes associated with Embden–

Meyerhof–Parnas (EMP) pathway, and solid lines represent enzymes associated with Entner–Doudoroff (ED) pathway. Numbers refer to enzymes listed

at right. (b) Enzyme identifier and resource investment requirements for E. coli K12. Protein column lists the subunits composing each functional

enzyme. Carbon and A. acids columns list the total number of carbon atoms and amino acids required for a complete subunit set. (c) Pathway tradeoff

quantification based on ATP production and resource investment. Glc/ATP is the moles of glucose required to produce a mole of ATP during the

conversion of glucose to 2 pyruvate. Carbon and A. acids columns list the summed pathway resource investments in terms of carbon atoms and amino

acids, respectively.
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cellular scale are a guiding principle to the chromosomal

coexistence of isozymes and alternative pathways.

Conclusions
Decades of economic and ecological studies have high-

lighted the importance of strategic resource allocation and

the associated constraints on competitive functionality.

These concepts are relevant at all biological scales, from

individual microbes to ecosystems, and appear to play key

roles in the composition, organization, and functioning of

molecular-level metabolic systems. The large body of

theoretical and applied work in these fields provides a

firm foundation for systems approaches to understand

microbial adaptations to simultaneous stressors, as well

as strong hope for the development of dynamic, molecu-

lar-level predictive tools.
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from elementary flux mode analysis, account for carbon investment in
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corresponding biomass production efficiency (Cmoles of glucose

consumed per Cmole biomass produced). The points on each curve are

color-coded to correspond with the transport systems from (a). The

opportunity costs to produce and operate higher affinity systems are

shown by the vertical and horizontal distances, respectively, between

the tradeoff curves. Note that opportunity costs increase with more

severe investment limitation. This is a result of increased glucose intake

to accommodate less efficient (but cheaper) enzymatic machinery.

Diagram adapted from [25��]. Data did not include maintenance energy

expenditures.
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