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Abstract: We have previously shown that the metabolism
for most efficient cell growth can be realized by a com-
bination of two types of elementary modes. One mode
produces biomass while the second mode generates only
energy. The identity of the four most efficient biomass and
energy pathway pairs changes, depending on the degree of
oxygen limitation. The identification of such pathway pairs
for different growth conditions offers a pathway-based
explanation of maintenance energy generation. For a given
growth rate, experimental aerobic glucose consumption
rates can be used to estimate the contribution of each path-
way type to the overall metabolic flux pattern. All metabolic
fluxes are then completely determined by the stoichiome-
tries of involved pathways defining all nutrient consumption
and metabolite secretion rates. We present here equations
that permit computation of network fluxes on the basis of
unique pathways for the case of optimal, glucose-limited
Escherichia coli growth under varying levels of oxygen
stress. Predicted glucose and oxygen uptake rates and
some metabolite secretion rates are in remarkable agree-
ment with experimental observations supporting the va-
lidity of the presented approach. The entire most efficient,
steady-state, metabolic rate structure is explicitly defined
by the developed equations without need for additional
computer simulations. The approach should be gener-
ally useful for analyzing and interpreting genomic data by
predicting concise, pathway-based metabolic rate struc-
tures. B 2004 Wiley Periodicals, Inc.
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INTRODUCTION

A number of methods have been developed to study the

structure of biochemical networks and to probe typically

unmeasurable, intracellular fluxes by analyzing the stoichio-

metric relationships of biochemical reactions (examples of

recent reviews include Stephanopoulos et al., 1998; Lee and

Papoutsakis, 1999; Schilling et al., 1999). For instance, with

metabolic flux analysis one attempts to map an experimen-

tally determined net rate pattern of consumed nutrients and

of excreted metabolites to the individual reaction rates of a

postulated intracellular reaction network. When experimen-

tal data are available for a range of operating conditions, one

can gain some insight into the functioning of a cell from the

changing intracellular reaction rate patterns at different

growth conditions. On the other hand, if it is known which

elementary modes (Schuster and Schuster, 1993; Schuster

et al., 1994, 1999, 2000, 2002) a cell is using and at what rate

it is growing, one can directly predict the net rates of nutri-

ent consumption, by-product secretion, and all individual

intracellular rates from the stoichiometry of the modes. The

applied culturing conditions together with the operating ele-

mentarymodesdetermine themass transfer reactionsbetween

a cell and its environment. These transport processes are

usually observable. Thus, one can use these observations to

validate the operation of certain elementary modes in a cell.

We have previously demonstrated a method of efficiently

sorting the dataset of all possible metabolic flux patterns

identified by elementary mode analysis. This analysis iden-

tified unique, nondivisible pathways (elementary modes)

operating in E. coli which most efficiently convert substrate

into biomass and energy (Carlson and Srienc, 2004). We

would like to refer to this previous study for a more

comprehensive overview of previous work related to E. coli

networks and elementary mode analysis; therefore, these

topics are not repeated here. Experimentally observed intra-

cellular regulation patterns as well as the metabolite se-

cretion behavior in response to different degrees of oxygen

limitation are in remarkable agreement with the operation of

these most efficient elementary modes. In the current study,

we extend this investigation by developing a method for

computing the detailed, steady-state intracellular rate

structure by treating the metabolism of a cell as a sum of

two types of pathways: one pathway produces biomass and

the second pathway operates solely to produce maintenance

energy. This representation of the cellular metabolism, based

on pathways identified in Carlson and Srienc (2004), permits

the assembly and the explicit defining of a continuous,
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steady-state, intracellular rate map based on a single set of

computer simulation data. The predicted rate structure is

compared with an extensive compilation of published,

experimental data to support the validity of the approach

and to demonstrate thatE.colicells likely grow using the most

efficient pathways in spite of the many possible pathway

choices. While the approach is validated by studying the well-

documented glucose-limitedE. coli system, the methodology

is applicable to a wide variety of analyses, including network

perturbations like the ones caused by gene knock-out mu-

tations. Since elementary mode analysis identifies all possi-

ble steady-states pathways, the single set of data contains not

only the optimal pathways for knock-out mutants but it also

contains the pathways that represent the minimal host flux

perturbation for knock-out mutants (Segre et al., 2002).

Pathway analysis approaches like elementary mode analy-

sis simplify the evaluation of metabolic networks by orga-

nizing the repertoire of enzymatic reactions into meaningful,

steady-state flux patterns. In contrast to methods that identify

flux patterns through computations constrained by some opti-

mization criteria, elementary modes are determined through

the combinatorial analysis of all possible pathways. Elemen-

tary modes represent, therefore, the entire set of simplest,

nondivisible flux units available to a network. The modes can

provide insight into the capabilities and the behavior of

biological organisms on the basis of fundamental metabolic

pathways. Recently, blood cell metabolism has been exam-

ined in terms of extreme pathways which represent a very

similar concept as elementary modes (Wiback and Palsson,

2002). This interesting analysis of a physiologically rele-

vant network was limited in scope, however, because the

relatively simple metabolic network of a red blood cell does

not support growth. Furthermore, while elementary mode

analysis and extreme pathway analysis are both based on

convex analysis, limiting the set of identified pathways to the

generating vectors of the convex cone can make the biological

interpretation of extreme pathways more difficult than

elementary modes. In particular, the red blood cell metabolic

network considered reversible exchange reactions which

likely limited the identified pathways to a smaller, less

inclusive set than would be identified using elementary mode

analysis (Schuster et al., 2002; Klamt and Stelling, 2003). The

network presented in the current work includes one reversible

exchange reaction (Carlson and Srienc, 2003). Therefore, the

interpretation of the network using elementary mode analysis

seems to be the more comprehensive approach. It extends our

previous study of E. coli metabolism and presents a method-

ology based on elementary modes for analyzing and inter-

preting complex metabolic processes like cellular growth

under conditions of culturing stress based on a minimal num-

ber of optimal pathways.

METABOLIC MODEL

The details of the metabolic model have been described

previously (Carlson and Srienc, 2004). Briefly, the bio-

chemical network model represents E. coli growth on

glucose minimal media. The model includes 11 ‘‘external’’

metabolites, glucose, biomass, O2, CO2, acetate, formate,

lactate, ethanol, succinate, NH3, and a generic maintenance

ATP term and includes 36 ‘‘internal’’ metabolites. The defi-

nition of ‘‘internal’’ and ‘‘external’’ metabolites can be

found in Schuster et al. (2000). Of the 46 reactions included

in the network, 18 are considered reversible, with the re-

maining 28 classified as irreversible. The model includes the

central metabolism of E. coli and considers such features as

glycolysis, the pentose phosphate pathway (PPP), the

tricarboxylic acid (TCA) cycle, and the reactions involved

in the formation of common metabolic by-products like

acetate, ethanol, formate, lactate, and succinate. Growth

rate-dependent biomass production was considered by

creatingdifferentbiomass terms torepresent thesevenstudied

growth rates. The configuration utilized in this study uses

glucoseas thesoleenergysource,whileglucoseandfixedCO2

are both potential carbon sources.

The models were analyzed using the publicly available

elementarymodeanalysisprogramMETATOOL(v.352_dou-

ble). This program is available at http://mudshark.brookes.

ac.uk/sware.html or ftp://ftp.bioinf.mdc-berlin.de/Pub/

metabolic/metatool/ (Schuster et al., 1994; Pfeiffer et al.,

1999). The results were analyzed by pasting the output matrix

into an MS Excel spreadsheet template. The spreadsheet

simplified the sorting and plotting of results based on desired

characteristics like carbon and oxygen yield or enzymes

utilized.Each individualgrowth rate-dependentbiomass term

wasrunandanalyzedasaseparatemodel.

The model represents a steady-state chemostat culture, so

the terms dilution rate and growth rate are used interchange-

ably. For the purposes of this article, the term elementary

mode and biochemical pathway are considered interchange-

able (Schuster et al., 2000).

THEORY

The accumulation rate of any cellular component, including

substrates and products, can be described in the classical,

chemical reaction network notation (Roels, 1983):

R ¼ AM ð1Þ
where R is the metabolite accumulation vector comprised of

metabolite concentration time derivatives, A is the

stoichiometry matrix of all reactions and metabolites in

the network, and M is the velocity vector comprised of

fluxes through each reaction (for references relevant to

biological systems, see Stephanopoulos et al., 1998; Lee

and Papoutsakis, 1999). The elements of the accumulation

vector have a value of zero for metabolites that do not

accumulate. The elements representing extracellular meta-

bolites may or may not be zero, depending on the growth

conditions. The typical objective of metabolic flux analysis

(MFA) is to determine, based on measurable net rates R and

the reaction stoichiometry represented by A, the individual

reaction rates represented by the velocity vector M.
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We have previously shown (Carlson and Srienc, 2003) that

E. coli contains four unique pathways that most effi-

ciently convert glucose into biomass and energy under any

level of oxygenation. These pathways define four unique,

discrete metabolic states MS1–MS4 which are used depend-

ing on the degree of oxygen limitation.

When cells grow in the most efficient manner, the vec-

tor M is composed of fluxes through the most efficient

elementary modes. We have previously shown that the

metabolism of a cell can be represented as the sum of two

types of elementary modes when the cells grow in the most

efficient manner. One mode operates for the synthesis of

biomass and the second mode operates for the generation of

cellular energy. Therefore, growth at the discrete metabolic

states MS1–MS4 can be described as:

Ri ¼ AðMx
i þMATP

i Þ i ¼ 1;2;3;4 ð2Þ

where Mi
x represents the fluxes from the biomass producing

mode and Mi
ATP represents the fluxes from the energy pro-

ducing mode. The subscript i refers to the discrete metabolic

states. As shown previously, the energy mode consists of a

subset of reactions that are used by the corresponding

biomass mode. For each metabolic state, the flux through the

pair of elementary modes specifies a defined accumulation

vector for a given specific growth rate. One should note that

this analysis represents just the inverse of the operation

accomplished with conventional metabolic flux analysis,

i.e., the observable system components found in vectorR can

be predicted based on the modes that are used.

Intermediate metabolic states can be obtained by taking

linear combinations of the four discrete metabolic states.

Such a strategy permits most efficient growth when there is

an intermediate degree of oxygen limitation. The combina-

tion of modes can be formally expressed as:

Ri;iþ1¼A½ fiðMx
iþM ATP

i Þþð1 � fiÞðM x
iþ1 þM ATP

iþ1 Þ�

i ¼ 1;2;3 ð3Þ

where fi and (1– fi) is the fractional use of the two metabolic

states which serve as the endpoints of the line segment

containing the intermediate metabolic state. A graphical rep-

resentation of the line segment between the most efficient

modes has been shown previously (Fig. 2, Carlson and

Srienc, 2004). For instance, for any metabolic state between

MS1 and MS2, i = 1; for any metabolic state between MS2

and MS3, i = 2; and for any metabolic state between MS3

and MS4, i = 3.

In practice, the elementary mode analysis was carried out

with different stoichiometric coefficients for the biomass

generating reaction in order to account for the growth rate-

dependent changes in biomass composition (a detailed de-

scription of the growth rate dependent biomass composition

can be found in Carlson and Srienc, 2004). Taking this into

consideration, the stoichiometry matrix is a function of

growth rate since the biomass-producing reaction stoichi-

ometry changes with doubling time. The elementary modes

obtained directly from the analysis are therefore somewhat

arbitrary, although the ratios of the individual rates in the

resulting modes are fixed. An easy conversion between the

somewhat arbitrary modes and biologically significant rates

like the specific growth rate are possible using a biomass

carbon balance. While the macromolecular composition of

E. coli is a function of growth rate, the biomass elemental

carbon content is not. Most reported carbon contents for

E. coli range from 45–50 mass percent. A sampling of

published values is shown in Table I. These values do not

vary with growth rate or substrate (Hempfling and Mainzer,

Figure 1. Specific glucose uptake rates (mmol/g cdw/h) vs. dilution rate

(h�1) for different strains of E. coli grown aerobically in glucose-limited

chemostats. Linear regression of the data yielded the following equation

relating dilution rate (h�1) to specific glucose uptake rate (mmol/g cdw/h) of

rglc = 12.14 D + 0.17. The data is taken from the following strains and

references: unnamed strain (open circle) (Schultz and Lipe, 1964); strain

ATCC 9001 (open square) (Neijssel et al., 1980); strain B/r and C(PC-1000)

(filled triangle) (Tempest and Neijssel, 1987); strain B ATCC 11303 (filled

square) (Snoep et al., 1993); strain ML30 (DSM 1329) (open diamond)

(Lendenmann, 1994); strain MC4100 (open diamond) (de Graf et al., 1999);

strain MG1655 (filled square) (Sauer et al., 1999); strain MC4100 (open

triangle) (Alexeeva et al., 2000); strain W3110 (filled diamond) (Abdel-

Hamid et al., 2001); strain JM101 (filled circle) (Emmerling et al., 2002).

cdw = cell dry weight.

Figure 2. Specific carbon fluxes (Cmmol/g cdw/h) associated with

glucose uptake (square) and biomass production (diamond) and the specific

ATP production rate (mmol ATP/g cdw/h) (triangle) as functions of the

dilution rate for oxygen-sufficient growth (MS1). The specific ATP

production rate was calculated by assuming all glucose not used for

biomass was used for energy production. The relationship between the

specific ATP production rate and dilution rate is rATP = 104.4 D + 4.7 mmol

ATP/g cdw/h.
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1975). For purposes of this study, it was assumed that E. coli

are 48% carbon by mass on a dry cell basis.

As noted above, the original elementary mode vector does

not immediately give experimentally relevant rates, al-

though the ratios between the individual rates are correct.

More useful values are obtained by scaling the elementary

mode vector with the following expression, which is based

on a biomass carbon balance:

s
x;H
i ¼ ln2

H

�
� 60 min

1 hour

�
0:48 g carbon

1 g cdw

� �

1 Cmole

12 g carbon

� �
1

a
x;H
bio

1

mH
bio;i

i ¼ 1;2;3;4 ð4Þ
This scaling factor is the ratio of the specific growth rate,

expressed as Cmoles biomass/g cdw/h, divided by the num-

ber of Cmoles of biomass in the elementary mode. The scal-

ing factor adjusts the relative velocity of the biomass mode

into a biologically significant rate for a doubling time of

H (min). The metabolic state and doubling time are noted by

the sub- and superscripts of s. The first set of brackets

represents the specific growth rate (h�1), the next two ratios

convert the units to Cmoles biomass per g cdw per h: Abio
x,H is

the stoichiometric coefficient for biomass used in the

elementary mode model, and mbio,i
H is the relative velocity

of biomass synthesis in the biomass mode. mbio,i
H is an

element of the elementary mode vector Mi
x,H . The values for

these terms, Abio
x,H and mbio,i

H , can be found in Appendix A.3

and Table II in Carlson and Srienc (2004), which describes

the elementary mode computation in detail. When this

scaling factor is multiplied by the biomass-producing

elementary mode, an experimentally relevant accumulation

vector related solely to biomass synthesis is obtained:

Rx;H
i ¼ AHMx;H

i s
x;H
i ð5Þ

where Mi
x,H is the corresponding biomass elementary mode

and AH is the doubling time-dependent stoichiometry matrix

which accounts for the biomass composition. Ri
x,H contains

the portions of the accumulation vector, Ri, that are contrib-

uted by the biomass-producing elementary mode. For in-

stance, it includes the specific glucose consumption rate,

rglc,1
x,H , which is devoted entirely to biomass synthesis. For this

study, the dimensions of the term are moles glucose/g cdw/h.

An example calculation, with units, is given in the Appendix.

The energy-producing elementary mode requires a differ-

ent scaling factor. This factor can be determined by treating

the total glucose consumption rate as a sum of two compo-

nents. One component is a result of the biomass-producing

elementary mode and the second component is a result of the

energy-producing elementary mode:

rglc ¼ r x
glc þ r ATP

glc ð6Þ

The specific glucose uptake rate under aerobic growth con-

ditions has been experimentally determined in many inves-

tigations. These studies demonstrate that the specific glucose

uptake rate, for each metabolic state, is a strong linear func-

tion of the specific growth rate. Therefore, one can use this

experimental finding to estimate the scaling factor for the

energy-producing elementary mode for metabolic state 1

(oxygen-sufficient conditions). It becomes:

sATP;H1 ¼ ðrHglc;1 � rx;Hglc;1Þ
1

Aglc

1

mATP
glc;1

ð7Þ

where Aglc is the stoichiometric coefficient associated with

glucose and mglc,1
ATP is the relative velocity of glucose

consumption in the energy producing mode M1
ATP. Thus,

the metabolic rate structure of a culture growing under con-

ditions of metabolic state 1 for any growth rate is defined by:

R1 ¼ AH ðMx
1s

x;H
1 þMATP

1 s
ATP;H
1 Þ ð8Þ

While this result is made possible by the extensively

available glucose uptake rate data for aerobic growth, the

extension of this result to other metabolic states requires

further assumptions. We have assumed that the maintenance

energy requirement for any metabolic state is the same and

that it depends only on the specific growth rate. Therefore, a

scaling factor can be generated that produces the same

amount of ATP as the culture growing in metabolic state 1.

To determine this scaling factor, it is convenient to define the

ATP yield on glucose for an energy-producing elementary

mode. This yield coefficient can be calculated from the ratio

of appropriate elements found in the accumulation vector:

YATP
ATP=glu;i ¼

rATP;HATP;i

r
ATP;H
glu;i

i ¼ 1;2;3;4 ð9Þ

This equation states that the ATP yield per glucose can be

defined as the ratio of the specific ATP production rate to the

specific glucoseuptake rate.Thescaling factor for the energy-

producing mode can then be expressed in a more general

way on the basis of the ATP yield of metabolic state 1 as:

s
ATP;H
i ¼

YATP
ATP=glc;1ðrHglc � r x;H

glc;1Þ
YATP
ATP=glc;i

1

aglc

1

mATP
glc;i

i ¼ 1;2;3; 4 ð10Þ

The energy mode scaling factor represents the ratio of the

specific maintenance energy production rate to the relative

velocity of ATP production in the energy mode. An example,

Table I. Carbon content of E. coli cell as percent of dry cell mass.

Strain Carbon percentage Reference

Unnamed 50 F 5.0 Luria, 1960

B 49.1 Taylor, 1946

Unnamed 48.0 F 0.2 Bratbak and Dundas, 1984

B 45.6 F 2.5 Hempfling and Mainzer, 1975

MRE 600 45.5 Bauer and Ziv, 1976

B 45.4 Bauer and Ziv, 1976

For the presented study, it was assumed that carbon accounted for 48%

of the cell dry weight.
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with units, is given in the Appendix. With the definition of the

scaling factors, the metabolic rate structure of the growing

cells at any point between metabolic state i and i + 1 can be

described in a general way for the entire range of operating

conditions with following expression:

Ri;iþ1 ¼ AH ½ fiðM x;H
i s

x;H
i þM ATP

i s
ATP;H
i Þ

þð1 � fiÞðMx;H
iþ1s

x;H
iþ1 þMATP

iþ1 s
ATP;H
iþ1 Þ� i ¼ 1;2;3 ð11Þ

This equation determines all system fluxes by adding scaled

combinations of a limited number of most efficient

biochemical pathways. One set of pathways is used to

produce biomass, while the second set of pathways is used to

produce cellular energy for maintenance expenditures. The

expression is analogous to Eq. (1), with the terms in the square

brackets representing the vector of all individual network

reaction fluxes which upon multiplication with the stoichi-

ometry matrix results in the net accumulation rate vector R.

The following section illustrates how the scaling factors are

determined from experimental aerobic glucose uptake rate

data for a given specific growth rate. Specification of an

additional nutrient uptake rate (such as the actual glucose

uptake rate or oxygen uptake rate) or any metabolite secretion

rate determines the two metabolic states involved and the

weighting factor f and permits computation of the entire rate

structure. A detailed sample calculation of a biomass and an

energy mode scaling factor is given in the Appendix.

GLUCOSE UPTAKE RATES AND
MAINTENANCE ENERGY

To estimate the pathway scaling factors, we analyzed

glucose uptake rate data for aerobic and anaerobic growth

conditions. The relationship between specific growth rate

and glucose uptake rate for cultures not experiencing signifi-

cant oxygen limitation has been measured in several studies

Table II. Scaling factors and predicted specific rates associated with each modeled growth rate under the four metabolic states.

Doubling time (min)

metabolic state s i
x,H si

ATP,H rglc % Cx rO2 % O2x rATP racetate rEtOH rformate*

200.1 1.22E-04 1.02 2.72 63 8.04 24 26.45 0.00 0.00 0.00

200.2 2.64E-04 2.20 4.23 48 5.87 25 26.45 5.61 0.00 0.00

200.3 3.96E-04 3.31 5.76 43 4.34 24 26.45 8.67 0.00 8.73

200.4 3.16E-03 8.82 13.00 32 0.00 0 26.45 11.56 11.58 23.20

100.1 4.16E-04 1.87 5.27 65 14.98 25 48.54 0.00 0.00 0.00

100.2 1.08E-02 4.04 8.07 50 10.98 26 48.54 10.39 0.00 0.00

100.3 2.70E-03 6.07 10.94 45 8.11 25 48.54 16.14 0.00 16.40

100.4 3.61E-03 16.18 24.46 34 0.00 0 48.54 21.55 21.63 43.44

80.1 2.45E-04 2.27 6.49 65 18.20 25 59.05 0.00 0.00 0.00

80.2 3.18E-03 4.92 9.87 50 13.35 26 59.05 12.56 0.00 0.00

80.3 1.59E-03 7.38 13.40 45 9.83 25 59.05 19.62 0.00 20.15

80.4 3.17E-03 19.68 29.76 34 0.00 0 59.05 26.16 26.20 52.89

60.1 2.73E-03 2.96 8.54 65 23.50 24 76.93 0.00 0.00 0.00

60.2 2.96E-03 6.41 12.87 50 17.29 26 76.93 16.12 0.00 0.00

60.3 4.44E-03 9.62 17.50 45 12.68 24 76.93 25.36 0.00 26.43

60.4 5.91E-03 25.64 38.60 34 0.00 0 76.93 33.79 33.79 68.65

50.1 6.33E-04 3.53 10.33 66 28.00 24 91.65 0.00 0.00 0.00

50.2 1.64E-02 7.64 15.47 51 20.65 26 91.65 19.07 0.00 0.00

50.3 4.11E-03 11.46 21.00 45 15.13 24 91.65 30.15 0.00 31.68

50.4 8.12E-03 30.55 46.18 34 0.00 0 91.65 40.21 40.31 82.05

40.1 1.07E-03 4.38 14.47 70 36.22 27 113.74 0.00 0.00 0.00

40.2 6.96E-03 9.48 21.04 55 26.81 29 113.74 24.43 0.00 0.00

40.3 3.48E-03 14.22 28.36 50 19.49 27 113.74 39.07 0.00 41.74

40.4 1.39E-02 37.91 60.87 38 0.00 0 113.74 52.07 51.99 106.74

30.1 3.03E-03 5.79 19.22 70 47.97 28 150.54 0.00 0.00 0.00

30.2 3.93E-02 12.55 27.93 55 35.52 29 150.54 32.33 0.00 0.00

30.3 9.84E-03 18.82 37.64 50 25.81 27 150.54 51.75 0.00 55.41

30.4 1.97E-02 50.18 80.66 38 0.00 0 150.54 68.95 68.84 141.45

The scaling can be used to determine the flux of any reaction in the metabolic network for growth rates with doubling times between 30 and 200 min and

from oxygen-sufficient conditions to the complete absence of oxygen. The scaling factors and the listed specific rates all have units of mmol/g cdw/h. Note

that none of these rates are in terms of Cmmol. See text for more details. glc = glucose, x = biomass, %Cx and %O2x are the percentage of the glucose and

oxygen fluxes, respectively, used for biomass production. Cdw = cell dry weight, EtOH = ethanol.

CARLSON AND SRIENC: OVERALL FLUX STATES OF E. COLI METABOLISM 153



(for example, Schultz and Lipe, 1964; Hempfling and Main-

zer, 1975). The results, summarized in Figure 1, show a

strong linear relationship between the specific growth rate

and the specific glucose uptake rate and show little variation

between different E. coli strains.

These data can be used to estimate the magnitude of the

flux through the energy-generating elementary modes. Since

the growth rate-dependent carbon flux requirements for

biomass production are known [see Eq. (5)], it is possible to

determine the glucose flux associated with maintenance

energy production using Eq. (6). This approach assumes that

cells operate in the most efficient manner, as described by

the MS1 fluxes.

The biomass glucose flux requirements were subtracted

from the overall glucose uptake rate and the remaining glu-

cose was assumed to be used for maintenance energy pro-

duction. The specific ATP production rate was determined

for each growth rate from the glucose uptake data and the

MS1 energy mode stoichiometry [see Eq. (9)]. The

maintenance energy requirements increase linearly with

growth rate (see Fig. 2). This is not surprising, since the slope

of the specific glucose uptake rate line is greater than the

slope of the carbon flux directed toward biomass production.

Extrapolating the specific ATP production rate to a dilution

rate of zero suggests a 4.7 mmol ATP/g cdw/h nongrowth

maintenance energy requirement which is similar to values

reported previously (Schultz and Lipe, 1964; Hempfling and

Mainzer, 1975; Tempest and Neijssel, 1987; Varma et al.,

1993). The growth associated maintenance energy require-

ment is equal to 105.2�A with units of mmol ATP/g cdw/h

(Fig. 2). This expression is based on averaged experimental

glucose uptake data (obtained from linear regression of data

shown in Fig. 1) and the assumption that E. coli is 48%

carbon by mass.

On the basis of the experimental glucose uptake data, the

energy mode scaling factor applicable for metabolic state 1

can be calculated using Eq. (7). The net accumulation vector

for MS1, R1, is then completely determined according to

Eq. (8) for any given doubling time. We can then compare

the predicted oxygen uptake rates for metabolic state 1 with

experimental data to test the validity of the approach.

Figure 3a shows that the predicted oxygen uptake rates fit

well within the range of published experimental values. The

close agreement between the predicted and the experimental

values strongly supports the assumption that cells grow using

the most efficient pathways.

The identified maintenance energy requirements are

based on experimental data from cultures not experiencing

significant oxygen limitation (MS1). We have assumed that

the same maintenance energy requirement is also applicable

for cultures experiencing oxygen stress. With this assump-

tion, the scaling factors for the energy-producing modes can

be calculated using Eq. (10). Since Eq. (11) is then

completely specified for all conditions supporting a given

specific growth rate, the net accumulation vector R is

determined for any doubling time and any degree of oxygen

limitation. On this basis, the anaerobic glucose uptake rates

were predicted as a function of the growth rate for an an-

aerobic culture (MS4) [Eq. (11); i = 3; f3 = 0]. These data are

plotted together with published experimental data in

Figure 3b. The prediction is well within a single standard

deviation of the experimental values. It therefore appears

reasonable to assume that the maintenance energy require-

ments are the same regardless of oxygen stress and that cells

likely operate in the most efficient way when they grow

anaerobically. These findings support results obtained with

linear programming methods (Edwards et al., 2001).

DEFINING THE METABOLIC RATE STRUCTURE

Scaling factors that convert the most efficient modes into

physiologically appropriate rates were developed in the pre-

Figure 3. a: Predicted specific oxygen uptake rate (solid line) and linear

regression fit of experimental oxygen uptake data (dashed line) vs. dilution

rate. The published specific oxygen uptake rates from the following refe-

rences: (filled triangle) (Schultz and Lipe, 1964); (filled square) (Hempfling

and Mainzer, 1975); (open square) (Farmer and Jones, 1976); (open triangle)

(Bajpai, 1987); (open diamond) (Calhoun et al., 1993); (filled diamond)

(Snoep et al., 1993); (open circle) (Paalme et al., 1997); (star) (de Graf et al.,

1999); (open diamond) (Sauer et al., 1999); (filled diamond) (Alexeeva

et al., 2000); (filled circle) (Abdel-Hamid et al., 2001); (open diamond)

(Emmerling et al., 2002). b: Predicted anaerobic specific glucose uptake rate

(solid line) and linear regression fit of experimental anaerobic specific

glucose uptake rate (dashed line) both as mmol glucose/g cdw/h vs. dilution

rate. The plotted data came from the following references: (open diamond)

(Hempfling and Mainzer, 1975); (filled diamond) (Chesbro et al., 1979);

(open square) (Snoep et al., 1993); (filled square) (Varma and Palsson,

1994); (filled circle) (Alexeeva et al., 2000); (open triangle) (Berrios-Rivera

et al., 2000); (open circle) (Emmerling et al., 2002); (filled triangle)

(Riondet et al., 2000). cdw = cell dry weight.
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vious section. These scaling factors depend only on the spe-

cific growth rate. One can then compute, for a given specific

growth rate, all four possible optimal metabolic states be-

tween completely aerobic and completely anaerobic growth

conditions. Table II lists the scaling factors that define the

metabolic rate structure based on elementary modes for most

efficient steady-state glucose-limited E. coli growth under

varying levels of oxygen stress. The table, together with

Eq. (11), can be used to explicitly define every point in the

steady-state solution space without further computer simu-

lations. Variation of the fractional contribution, f, permits

computation of growth conditions between any two adjacent

metabolic states. Alternatively, for a known growth rate,

specification of a glucose or oxygen uptake rate (or any by-

product transfer rate) fixes the identity of the two contributing

metabolic states and their fractional contributions. The op-

timal behavior of a glucose-limited cell culture can be ex-

pressedby thesimplenonnegative, linear combinationofonly

four unique metabolic states.

It is possible to plot the relationship between any cellular

fluxes without further computer simulations using the de-

fined rate structure. For instance, Figure 4 shows a three-

dimensional relationship between glucose fluxes, oxygen

fluxes, and growth rate. This figure is analogous to a

phenotypic phase plane (Edwards et al., 2002); however, the

basis of the presented work is the stoichiometry from

nondivisible pathways (Carlson and Srienc, 2004) and not

the mathematical concept of a ‘‘shadow price’’ used in linear

programming. There are only two degrees of freedom for the

steady-state solutions represented in Figure 4. Fixing two

rates sets the value of the third parameter. The fluxes show

that metabolic state 2 occurs when the available oxygen is

about 74% of the level required for oxygen-sufficient growth

(MS1) at a given doubling time. The specific oxygen uptake

rates for each metabolic state and for each considered growth

rate are also listed in Table II. For instance, the specific

oxygen uptake rate for a culture with an 80-min doubling

time is 18.2 and 13.4 mmol O2/g cdw/h for MS1 and MS2,

respectively. Knowing the doubling time and oxygen uptake

rate sets the value of the third parameter: specific glucose

uptake rate. A specific oxygen uptake rate of 13.4 mmol O2/g

cdw/h and a doubling time of 80 min fix the specific glucose

uptake rate at 9.9 mmol glucose/g cdw/h. Metabolic state 3

occurs when the available oxygen is about 54% of the level

required for oxygen-sufficient growth at a given doubling

time. The increased requirement for glucose under con-

ditions of oxygen stress is also evident in Figure 4. Com-

pletely anaerobic growth conditions require f4.5 times

more glucose than oxygen-sufficient conditions. The slopes

of the lines representing a constant doubling time indicate

the sensitivity of the E. coli network to oxygen and offer an

approach for determining metabolic response coefficients

with respect to oxygen. The region between metabolic states

3 and 4 is especially sensitive to small changes in the oxygen

fluxes. In this region, small amounts of oxygen have a large

effect on the required glucose flux. Since each line on the

doubling time axis represents the same amount of biomass,

an increase in glucose uptake rate corresponds linearly with a

decrease in biomass carbon yield. This information could be

important for such calculations as determining the relative

cost benefits of limited aeration on media substrate costs.

The rate structure contains a large amount of information

related to the most efficient conversion of nutrients into

biomass and maintenance energy. The following examples

illustrate some principles and applications of this solution

space to answer physiological questions. The predictions

are compared with experimental results, when available, as

an additional means of validating the modular, pathway-

based interpretation of the E. coli metabolism.

BY-PRODUCT SECRETION PROFILES

The most efficient rate structure was used to find the by-

product secretion profile of an E. coli culture growing at a

constant growth rate with varying degrees of oxygen limi-

tation. The model predictions are compared in Figure 5 with

a recent experimental study by Alexeeva et al. (2000) which

examined the same question. The pathway approach pro-

Figure 4. The 3D relationship between specific oxygen flux, specific

glucose carbon flux, and specific growth rate presented as a doubling time for

most efficient, glucose-limited growth of E. coli. The circles represent the

most efficient modes for spanning the growth conditions from anaerobiosis

to completely aerobic growth. The doubling time axis is labeled on top of the

line representing metabolic state 2 (MS2). The isoline representing a culture

with a doubling time of 80 min is highlighted with a heavy line. Every point

on this line represents a culture with an 80-min doubling time under different

levels of oxygen stress. The metabolic state lines are linear regression fits of

the data points shown in the plot as open circles. The line fit r2 values were

better than or equal to 0.997 for all three lines. This chart considers both

biomass production and maintenance energy requirements. The metabolic

state lines do not go through the origin because of the nongrowth associated

maintenance energy requirements. Any cellular flux associated with optimal

growth can be determined using Table II and Appendixes A.4 and A.2 in

Carlson and Srienc (2004). All other locations in the operating space can be

defined by linear combinations of the nearest data points. The same type of

chart can be constructed to show the relationship between any two

intracellular fluxes and the growth rate.
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vides a rational, relatively simple basis for interpreting the

metabolic switches in E. coli metabolism at various levels of

oxygen stress.

The analysis predicts very well the switching between the

four metabolic states as a function of oxygen limitation as

shown by the onset of excretion of the byproducts acetate,

formate, and ethanol. While the qualitative trend of secretion

rates is also predicted, the computed values deviate some-

what from the experimental values when growth becomes

increasingly anaerobic. There are several possibilities that

can explain this deviation. First, experimental data may not

be accurate, as it is difficult to avoid evaporation of the

volatile compounds. This could significantly reduce exper-

imentally measured values. Second, the predictions are

based on the same maintenance energy demand under

anaerobic conditions as evaluated for aerobic conditions. A

lower maintenance energy requirement under anaerobic

conditions would decrease by-product secretion rates.

However, this is in contrast to the glucose consumption rate

data shown in Figure 3b, which supports the assumption of

the same maintenance energy requirement. Third, the cells

may not use the predicted most efficient pathways under

anaerobic conditions. Under some conditions, processes like

the diffusion of acetate or ethanol out of the cell may limit

the flux through the most efficient mode. Under such

conditions, a slightly less efficient mode which uses other

electron sinks, like succinate, could be used in addition to the

most efficient mode. As previously shown (Carlson and

Srienc, 2003), the E. coli network contains a number of

elementary modes that are only slightly less efficient under

anaerobic conditions. Some of these modes secrete succi-

nate. Secretion of succinate could decrease acetate and

ethanol secretion rates. The culture studied by Alexeeva et al.

(2000) produced some succinate but only trace amounts of

lactate. In addition to being consistent with experimental

data, these results are also consistent with the by-product

secretion order predicted in Varma et al. (1993) using LP

methods, further validating the presented approach.

OXYGEN CONSUMPTION AND LIMITATION IN
RAPIDLY GROWING CULTURES

Rapidly growing cultures are important for biotechnology

processes, but they often experience oxygen limitation. The

onset of partially oxidized by-product secretion is believed

to be the result of insufficient oxygen transfer to the cells.

The oxygen transfer process is a complex function of oxygen

solubility, oxygen diffusion rates, and cell geometry (i.e., the

surface area to volume ratio) (Andersen and von Meyenburg,

1980). The reported maximum oxygen uptake rates for a

number of E. coli strains growing in glucose minimal media

can be found in Table III. Most reported values are between

15 and 21 mmol O2/g cdw/h. Depending on the strain and the

culturing conditions, the onset of partially oxidized by-

product production can differ. As the metabolic demand for

oxygen surpasses the maximum uptake rate, the cell switches

from an oxygen-sufficient metabolism (MS1) toward an

oxygen-limited metabolism (MS2 and MS3). The transition

from MS1 to MS2 results in the production of acetate. The

growth rate at which oxygen limitation first occurs has sig-

nificant implications on the behavior of a culture. The tran-

sition from oxygen sufficiency to oxygen limitation requires

an increase in glucose catabolism (see Fig. 4). The predicted

specific glucose uptake rates for cells with a maximum

specific oxygen uptake rate of 15 mmol/g cdw/h and a

maximum rate of 20 mmol/g cdw/h are shown in Figure 6.

Figure 6a shows both the glucose and oxygen uptake rates

vs. growth rate for a culture with a maximum oxygen uptake

rate of 15 mmol O2/g cdw/h. The culture can grow using

MS1 until a growth rate of f0.43 h�1. At this point, oxygen

demand surpasses the maximum possible uptake rate and the

cultures start growing with an intermediate metabolic state

between MS1 and MS2. Oxygen is continuously available;

however, it is only supplied at a rate of 15 mmol O2/g cdw/h.

The transition from oxygen-sufficient to oxygen-limited

growth lowers both the biomass and ATP yield on glucose,

so the glucose consumption rate increases at a faster rate with

respect to the specific growth rate, as seen by the change of

slope in Figure 6a. The transition to an oxygen-limited

metabolicstateresults intheproductionofacetate.Atagrowth

Figure 5. Predicted specific acetate production rates based on ‘‘typical’’

E. coli (filled triangle) and published specific acetate production rates from

Alexeeva et al. (2000) (open triangles). Predicted ethanol-specific

production rates based on ‘‘typical’’ E. coli (filled squares), and published

ethanol production rates from Alexeeva et al. (2000) (open squares). The

arrows show the conditions of predicted formate product (filled arrow) and

the experimental point of formate production (open arrow).

Table III. Maximum experimental oxygen uptake rates for E. coli grown

in glucose minimal media.

E. coli

strain

Maximum O2 uptake rate

(mmol O2/g cdw/h) Reference

B 21 Hempfling and Mainzer, 1975

B/r 20 Andersen and von Meyenburg, 1980

RB791 20 Lin et al., 2000

W3110 19 Lin et al., 2000

Unnamed 16 Schulze and Lipe, 1964

W3110 15 Varma and Palsson, 1994

cdw = cell dry weight.
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rate off0.58 h�1, the culture reach MS2. Another change in

the slope of the glucose uptake rate is seen as the cells

transition toward intermediary metabolic states between MS2

and MS3. When the culture surpasses the conditions defined

by MS2, the cells begin to produce formate. As mentioned

earlier, MS2 occurs when the supplied oxygen isf74% of the

total oxygen required for oxygen-sufficient growth and MS3

occurs when the supplied oxygen is about 54% of the oxygen

needed for oxygen-sufficient growth.

The maximum glucose uptake rate and the maximum

oxygen uptake rate play an important role in culture be-

havior. The smaller the maximum oxygen uptake rate, the

more glucose a culture will need to maintain a steady state at

a given growth rate. For instance, a culture with a maximum

oxygen uptake rate of 15 mmol O2/g cdw/h needs f40%

more glucose than a culture with a maximum O2 uptake rate

of 20 mmol O2/g cdw/h to maintain a steady-state culture at

a growth rate of 0.58 h�1 (see Fig. 6b). This corresponds to a

difference in biomass and ATP substrate yields of f40%.

The maximum oxygen uptake rates likely play a role in a

culture’s maximum growth rate. The maximum reported

glucose uptake rates for an aerobic culture are around

10.5 mmol glucose/g cdw/h (Varma and Palsson, 1994; Lin

et al., 2001); therefore, the maximum specific growth rate for

cultures with the considered maximum oxygen uptake rates

would be around 0.58 h�1 to 0.74 h�1. These growth rates are

in the range reported by Senn et al. (1994) in a survey of

maximum specific growth rates for E. coli growing on

glucose minimal media in both batch and chemostat cultures.

The effect of oxygen limitation on culture parameters

like specific acetate production rates can be directly pre-

dicted using the information in Table II. For instance, a

culture with a maximum oxygen uptake rate of 15 mmol/g

cdw/h reaches MS2 at a dilution rate of 0.58 h�1, which is

equivalent to a doubling time of f72 min (see Fig. 6). The

specific acetate production rate at this point can be deter-

mined by using a linear average of the two closest growth

rates found in Table II. The specific acetate production rate

(racetate,2
H =80 ) for a culture in MS2 and having an 80-min

doubling time (A = 0.52 h�1) is 12.6 mmol/g cdw/h, while

a culture with a 60-min doubling time (A = 0.69 h�1) in

MS2 has a specific acetate production rate (racetate,2
H =60 ) of

16.1 mmol/g cdw/h. The contribution from each growth

rate is determined using the lever rule and can be described

with the following expression:

r H¼72
acetate ¼ r H¼80

acetate 1 � d1

d1 þ d2

� �
r H¼60
acetate;2 1 � d1

d1 þ d2

� �
ð12Þ

where d1 and d2 are the line lengths taken from point ‘‘A’’ in

Figure 7. The predicted specific acetate production rate is

14.0 mmol/g cdw/h for a culture with a maximum O2 uptake

rate of 15 mmol/g cdw/h and a growth rate of 0.58 h�1. The

lever rule can also be used to determine the contribution from

the two closest metabolic states. For instance, with a

Figure 6. a: Predicted specific glucose (solid lines) and specific oxygen

uptake rates (dotted lines) vs. growth rate. The plot shows the predicted

glucose uptake rates for cultures having a maximum oxygen uptake rate of

15 mmol O2/g cdw/h. Under conditions of oxygen limitation, the glucose

uptake rate increases to maximize growth efficiency for the available

oxygen. The points labeled MS2 and MS3 correspond to culturing conditions

defined as metabolic states 2 or 3, respectively. See text for more details. The

maximum specific oxygen uptake rate also indicates when the cultures start

to produce significant levels of the partially oxidized by-product acetate,

formate, or ethanol. For instance, with a maximum oxygen uptake rate of

15 mmol/g cdw/h, acetate would be produced starting at a dilution rate of
f0.43 h�1. b: Comparison of glucose uptake rates vs. growth rate for cul-

tures with a maximum oxygen uptake rate of either 15 (circles) or 20 (tri-

angles) mmol O2/g cdw/h. See text for more details. cdw = cell dry weight.

Figure 7. Illustration of the lever rule for determining flux patterns for

cultures with doubling times not specifically studied (point A) and for inter-

mediate metabolic states (point B). By using linear averages of the nearest

defined points, it is possible to determine the intracellular fluxes for any

position in the continuous operating space. See text for more details. The

plot is a subsection from Figure 4. cdw = cell dry weight.
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maximum oxygen uptake rate of 15 mmol O2/g cdw/h and a

doubling time of 80 min (point ‘‘B’’ in Fig. 7), the predicted

specific acetate production rate is defined by:

racetate ¼ rH¼80
acetate;1 1 � l1

l1 þ l2

� �

þ rH¼80
acetate;2 1 � l2

l1 þ l2

� �

¼ rH¼80
acetate;1 f1 þ rH¼80

acetate;2ð1 � f1Þ

where l1 and l2 are the line lengths for point ‘‘B’’ in Figure 7

and the terms racetate,1
H =80 and racetate,2

H =80 are the specific acetate

production rates for a culture with a doubling time of 80 min

in MS1 and MS2, respectively. The expression also dem-

onstrates the use of the fractional contribution factor f1. This

factor sets the nonnegative, fractional contribution of the two

nearest metabolic states, which in this case are MS1 and

MS2. Note that there is no contribution from MS3 or MS4.

The predicted specific acetate production rate under these

conditions is 8.4 mmol acetate/g cdw/h.

METABOLITE FLUXES AND PARTITIONING
AT BRANCH POINTS

The defined rate structure contains the flux through every

examined reaction and therefore permits analysis of metab-

olite flux partitioning at all branch points under different

doubling times and under different levels of oxygen stress.

The partitioning of metabolite fluxes around the acetyl-CoA

pool for a culture growing with a 200-min doubling time is

shown in Figure 8. The metabolic model accounts for two

different acetyl-CoA synthesis reactions: pyruvate dehydro-

genase complex (R21) and pyruvate formate lyase (R20); and

four reactions that consume acetyl-CoA: citrate synthase

(R22), acetaldehyde dehydrogenase/alcohol dehydrogenase

(R54), phosphotransacetylase/acetate kinase (R55), and

biomass synthesis requirements (R70) (for stoichiometries,

see Appendix A.1 in Carlson and Srienc, 2004).

To operate most efficiently under different levels of

oxygen stress, the enzymes shown in Figure 8 must have

different activities under different conditions. For instance,

the flux through citrate synthase (R22) decreases more than

10-fold between MS1 and MS2, the flux through phospho-

transacetylase/acetate kinase (R55) increases more than 2-

fold between MS2 and MS4, and the acetyl-CoA drain for

biomass production (R70) remains the same, regardless of

oxygen stress. The analysis gives insight into the structure of

the regulatory network by predicting what metabolite fluxes

are most efficient for a given set of culturing conditions. The

metabolite flux information in Figure 8 could be systemati-

cally analyzed using the tools of metabolic control analysis

where the relationship between fluxes and enzyme activities

are analyzed (for a review see Kacser et al., 1995). The

informationcouldalsobe useful for creating astructured basis

to design and to interpret the results of 13C-based flux studies

(for recent review, see Wiechert, 2001). This type of analysis

can be done at any branch point in the central metabolism.

DESCRIPTION OF DISTRIBUTED
CELL POPULATIONS

Cell cultures are not typically comprised of a homogeneous

population. There is often significant heterogeneity of pa-

rameters like cell size, microenvironments, age, or genetic

make-up. Differences in parameters like cell size could

potentially lead to a distribution of other parameters like the

maximum specific oxygen uptake rates due to different

surface area to volume ratios (Andersen and von Meyenburg,

1980). The presented analysis provides a structured basis for

interpreting potential ramifications of population hetero-

geneity on culture parameters. Techniques like flow cyto-

metry (FCM) are capable of measuring single cell properties.

A recent study has shown that E. coli populations have a

distribution of glucose uptake rates (Natarajan and Srienc,

1999, 2000). A hypothetical distribution of glucose uptake

rates and its relationship to growth rate and oxygen uptake

rate is shown in Figure 9. It is clear from this figure that a cell

population exhibiting heterogeneous glucose uptake rates

Figure 8. Metabolite flux partitioning around acetyl-CoA for a steady-state E. coli culture with a 200-min doubling time under different levels of

oxygenation. Under different levels of oxygen stress, the flux rates into and out of the acetyl-CoA metabolite pool change significantly. The designations of the

reactions can be found in Appendix A.1 of Carlson and Srienc (2004); see text for more details. R20 = pyruvate-formate lyase; R21 pyruvate decarboxylase

complex; R22 = citrate synthase; R54 = acetaldehyde dehydrogenase/alcohol dehydrogenase, R55 = phosphotransacetylase/ acetate kinase and R70 = biomass

synthesis requirements. cdw = cell dry weight.

(13)
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must be heterogeneous in other properties as well. Such a

cell population likely has a distribution of either growth rates

and/or of metabolic states. But the real situation may be even

more complicated if cell-to-cell interactions can take place

in which metabolites are secreted by some cells and con-

sumed by others.

DISCUSSION

In the presented study, we develop a method of assembling

steady-state solution spaces from a minimal number of

unique, nondecomposable pathways. This is done by treating

the intracellular fluxes as a combination of separate fluxes

for biomass synthesis and maintenance energy production.

By defining the doubling time-dependent maintenance

energy requirements, it is possible to assemble the complete

rate structure by adding weighted, nonnegative linear combi-

nations of a limited number of these pathways. The validity

of the results was tested by comparing the predictions with

the extensively available experimental and theoretical data

related to glucose-limited growth under varying degrees of

oxygen stress. The approach was used to provide a mecha-

nistic basis for interpreting experimental results like the

relationship between maximum specific oxygen uptake rates

and the maximum specific growth rates.

The relationship between elementary mode analysis, ex-

treme pathway analysis, and linear optimization techniques

has been described in detail in several articles (Schilling

et al., 1999; Schuster et al., 2002; Klamt and Stelling, 2003).

All three techniques operate on the same mathematical basis:

a convex cone that contains the steady-state solution space.

Briefly, elementary mode analysis identifies all possible,

unique, nondivisible pathways available to a network, in-

cluding the generating pathways for the convex cone. Ex-

treme pathway analysis, on the other hand, identifies only the

convex cone generating pathways. Limiting the analysis to

just the generating vectors can complicate analysis by ex-

cluding biologically significant or important pathways. For

instance, the most efficient biomass elementary mode for

completely aerobic growth (MS1) is not a generating path-

way. Traditional linear programming (LP) methods typically

find a point on the surface of the convex cone that satisfies a

set of subjective optimality criteria (Savinell and Palsson,

1992; Varma and Palsson, 1993). Depending on the applied

optimization criteria, these traditional LP methods do not

always identify unique, nondivisible pathways. Instead, they

may identify flux states that are comprised of linear com-

binations of elementary modes. Recently, a mixed integer

linear programming (MILP) technique has been developed

which can identify all ‘‘alternate optima’’ for a user-supplied

optimality criteria (Lee et al., 2000; Phalakornkule et al.,

2001). It would be interesting to find out to what extent these

optima coincide with elementary modes, since this approach

could potentially represent an alternate way to compute

fundamental pathways. While elementary mode analysis can

require significant computational effort to determine all

pathways for a complex metabolic network, the output file

represents the complete set of physiologically meaningful

pathway possibilities (Schuster et al., 2002), which makes the

application of this concept very attractive.

The anaerobic glucose uptake data in Figure 3b shows

significantly more scatter than the aerobic data shown in

Figure 1. This can potentially be explained by examining the

by-products of anaerobic growth. The most efficient means

of anaerobic E. coli growth, as predicted by MS4, results in

the formation of acetate, ethanol, and formate, but several

reports indicate that anaerobic E. coli cultures often produce

varying amounts of lactate and succinate (Blackwood et al.,

1956; Belaich and Belaich, 1976; Chesbro et al., 1979; Alam

and Clark, 1989; Alexeeva et al., 2000). Mode analysis

suggests that these by-products are the result of slightly less

efficient anaerobic energy-producing pathways (data not

shown). Under some conditions, the pathways associated

with M4
ATP may limit the rate of ATP production, requiring

the cell to utilize other, less efficient lactate and succinate-

producing energy pathways to meet the maintenance energy

requirements. To make up for the lower ATP yields of these

pathways, an increased rate of glucose catabolism would be

required. The flux through the less efficient modes is likely a

strain and a condition-dependent effect. Different articles

report very different levels of these two by-products

(Blackwood et al., 1956; Belaich and Belaich, 1976; Ches-

bro et al., 1979; Alam and Clark, 1989; Alexeeva et al.,

2000). Some of the experimental data points in Figure 3b are

also slightly below the predicted glucose uptake rate. The

glucose uptake rates in near anaerobic E. coli cultures are

quite sensitive to the presence of oxygen or other electron

Figure 9. Two potential scenarios based on a population distributed

specific glucose uptake rate. A hypothetical distribution of glucose uptake

rates, shown along the x-axis, are projected onto the MS1 line suggesting a

distribution of growth rates and projected onto a single growth rate line

suggesting a distribution of metabolic states. The plot is a subsection of

Figure 4. cdw = cell dry weight.
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acceptors. Even small amounts of contaminating oxygen can

have a large effect on the glucose uptake rates (see Fig. 4).

Nonideal experimental conditions that have residual oxygen

or other electron acceptors could potentially lower the ob-

served glucose uptake rates.

The metabolic network structure defined in the presented

study is based on glucose minimal media and examined oxy-

gen stress. Other carbon sources like pentose sugars and

different culturing stresses like nitrogen or phosphorous

limitation would have different parameters like ATP or

biomass carbon yields. Defining the operating spaces for

these different conditions could be very useful for analyzing

and interpreting results from DNA microarray, proteomic, or

metabolic flux experiments. The methodology established in

the presented study demonstrates how metabolic solution

spaces can be constructed from physiologically meaningful

networks to study processes as complex as cellular growth

under varying levels of culturing stress. Similar models for

other organisms like Saccharomyces cerevisiae could also

be created from the available biochemical data and

annotated genomic sequences.

APPENDIX

The following is an example for determining the biomass

and energy scaling factor for an aerobic culture (MS1) with a

200-min doubling time. The external metabolite stoichiom-

etry for the biomass and energy mode are shown below.

These pathways are taken from Carlson and Srienc (2004):

14; 005 glucose þ 19; 006 NH3 þ 15; 806 O2

¼ 15; 078 CO2 þ 26biomass ðA:1Þ

glucose þ 6 O2 ¼ 26ATP þ 6 CO2 ðA:2Þ
The scaling factor for the biomass pathway can be

determined using Eq. (4). The term Abio
x,200 is the stoichio-

metric coefficient that converts the biomass term into a

Cmole basis. In this case, it is equal to 2652, which can be

found in Table II of Carlson and Srienc (2004). The term

mbio,1
200 is the relative biomass production rate and is equal to

26 Eq. (A.1). Therefore, the scaling factor is:

s
x;200
1 ¼ ln 2

200 min

�
� 60 min

1hr

�
0:48 g carbon

1 g cdw

� �

1 Cmole

12 g carbon

� �
1

2652 Cmole

1

26

¼ 1:22 x10�7

g cdw hr
ðA:3Þ

As mentioned previously, this assumes biomass is 48%

carbon by mass. The weighting factor in Eq. (A.3) is simply

the ratio of the specific growth rate in terms of Cmoles

biomass/g cdw/h divided by the number of Cmoles in the

biomass mode found in Eq. (A.1). Multiplying the scaling

factor by any element of the biomass synthesizing mode

vector gives a biologically significant rate. For instance,

multiplying s1
x,200 by the glucose term [14,005 moles in

Eq. (A.1)] gives a specific glucose consumption rate for bio-

mass synthesis (rglc,1
x,200) of 1.71 � 10�3 mol glucose/g cdw/h.

The biologically significant rates are not limited to the exter-

nal metabolites. The rate through any intracellular reaction

is also biologically significant.

The scaling factor for the energy mode can be

determined using Eq. (10). The ATP yield per glucose is

26 based on the stoichiometry of Eq. (A.3). Figure 1 gives a

specific glucose uptake rate (rglc,1
200 ) of 2.72 � 10�3 mol/g

cdw/h for an aerobic culture with a 200-min doubling time.

It was shown above that the biomass synthesis requires a

specific glucose uptake rate of 1.71 � 10�3 mol/g cdw/h.

The term Aglc is the stoichiometric coefficient for glucose,

which is 1 for all energy modes. The mglc,1
ATP term is the

relative rate of glucose catabolism for the MS1 energy

mode, which is 1 based on Eq. (A.2). Therefore, the scaling

factor is:

s
ATP;200
1 ¼

26 ATP
glc

� 1:01�10�3mole glc
g cdw hr

26 ATP
glc

 !
1

1moleglc
� 1

1

¼ 1:01 � 10�3

gcdw hr
ðA:4Þ

Equation (A.4) simply represents the doubling time-

dependent specific ATP production rate found in Figure 2

divided by the number of ATP produced in the MS1 energy

mode. This weighting factor converts every term in

Eq. (A.2) into a biologically significant rate. For instance,

multiplying s1
ATP,200 by the ATP term suggests a culture

growing aerobically with a 200-min doubling time has a

specific maintenance energy production rate of 26.3 �
10�3 mol ATP/g cdw/h.

Culture parameters like the specific CO2 evolution rate

are then determined by adding the biomass and energy

mode contributions:

q200
CO2

¼ q
x;200
CO2

þ q
ATP;200
CO2

¼ s
x;200
1 mx

CO2
þs

ATP;200
1 mATP

CO2
ðA:5Þ

Substituting the numbers from above gives the specific

CO2 evolution rate:

q 200
CO2

¼ 1:22 � 10�7

g cdwhr

� �
� 15078 mole CO2

þ 1:01 � 10�3

g cdw hr

� �
� 6 mole CO2

¼ 7:9 � 10�3 mole CO2

g cdw hr
ðA:6Þ

The same procedure described here was done for all of the

considered doubling times by pasting the appropriate mode
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vectors into an MS Excel spreadsheet template. Adjustments

in parameters like maintenance energy expenditures can be

made without additional computer simulations by simply

modifying the magnitude of the scaling factor. The identified

pathways would not change. The biomass mode scaling factor

does not change with maintenance energy requirements.

Correction: A reaction was incorrectly labeled in Appendix A.2 in

Carlson and Srienc, 2004. All occurences of reaction R83 in Appendix

A.2 should read reaction R82.
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