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Abstract

Microbial communities composed of different species are frequently observed
in nature. There is growing interest in understanding the advantages of living
in a mixed species community as compared to a monoculture. Understanding
the effects of microbial interactions will lead to better control of environmental
microbial systems responsible for nutrient cycling, medical systems like the
human GI tract or chronic wounds, and applied systems like biofuel synthesis.
We examine two different advantages associated with interacting microbial
communities operating as a food chain. The first advantage is the minimiza-
tion of anabolic resource investment required to drive a constant flux through
a series of enzyme-catalyzed reactions. The second advantage is enhanced
productivity of a biofilm community when inhibitory byproducts are consumed
by a scavenger population.

1 Introduction

Microorganisms acquire resources from their environment, which are pro-
cessed via series of enzymes into cellular energy and biomass, and metabolic
byproducts are secreted. Species that are efficient at deriving cellular energy
and biomass from available resources, typically grow and reproduce faster than
less efficient species [11]. This simplified view suggests communities should
consist of a monoculture of the most ‘efficient’ species, sometimes termed
‘superorganisms’. Superorganisms are not observed in nature. Instead, com-
plex communities of interacting microorganisms are observed [6]. Potential
advantages of mixed communities relative to monocultures include efficiency
gains from specialization, the development of advanced functions, the abil-
ity to better tolerate environmental fluctuations, the utilization of inhibitory
byproducts by other community members, and lower susceptibility to a single
predatory attack, among many possible advantages.



The focus here is on food chains within microbial communities, specifi-
cally, systems where one population consumes metabolites excreted by oth-
ers. These types of interactions are frequently referred to as syntrophic in-
teractions [13]. Food chains are commonly observed in natural and applied
systems including the cycling of carbon during the degradation of lignocel-
lulosic material or the cycling of nitrogen in waste water treatment facili-
ties [10]. Additionally, food chains have been observed to evolve repeatedly
in the laboratory environment. For example, chemostats inoculated with a
single Escherichia coli strain and operated under carbon-limited conditions
will evolve spontaneously into a community of crossfeeding sub-strains. The
evolved communities consist of one strain specializing in glucose catabolism
and other strains specializing in catabolism of secreted inhibitory byproducts
like acetate. The overall system demonstrates a 15% improvement in biomass
production from the limiting resource glucose [9].

While there are many potential benefits for microorganisms existing in a
mixed community, the focus here is on a theoretical analysis of two possible
benefits associated with resource exchange: enhanced return on limiting an-
abolic resource and lowered byproduct inhibition. The first benefit is quantified
by solving a constrained optimization model of a series of reactions controlled
by resource investment into different substrate and enzyme pools, and the
second benefit is reduced byproduct accumulation quantified using individual-
based models of a biofilm community.

2 First Benefit: Enhanced Return on Anabolic Resource Invest-
ment

Cellular flux is driven by combinations of resource investments into both sub-
strate and enzymes pools. Consider an n reaction enzymatic pathway

S1
E1→ S2

E2→ · · · En−1→ Sn
En→ P,

where the substrate S1 is transformed into product P with the help of n en-
zymes, E1, ..., En. In a limited resource environment, microorganisms that
maximize the functional return on resource investment will be competitive [2].
To examine the trade-off between investment into combinations of substrate
and enzyme pools, we assume that the cell can partition an essential resource
(e.g. carbon) into optimal combinations of substrate pools utilized in this
enzymatic pathway and into building the enzymes E1, ..., En. Both substrate
pools and enzymes represent resource investments but with different resource
liquidity. If substrate Si consists of bi carbon atoms and enzyme Ei consists of
ai carbon atoms, then the total carbon investment for the enzymatic pathway



is:

C :=
n∑

i=1

([Ei]ai + [Si]bi).

Our model of the enzymatic pathway takes the form of a set of differential
equations:

Ṡ1 = ka1S0−
V1[S1]

κ1 + [S1]
, Ṡ2 =

V1[S1]

κ1 + [S1]
− V2[S2]

κ2 + [S2]
, Ṗ =

Vn[Sn]

κn + [Sn]
−ka2 [P ],

where ka1 [S0] is a constant source term and [P ] is the concentration of the
final product. Here Vi = [Ei]ki and we assume a one-to-one stochiometric
relationship between Si and Si+1 as catalyzed by Ei. Assuming the pathway
is at steady state we obtain

ka1S0 =
V1[S1]

κ1 + [S1]
=

V2[S2]

κ2 + [S2]
= . . . =

Vn[Sn]

κn + [Sn]
= ka2 [P ]

and thus ka1S0 is the steady state flux through the pathway. The concentration
of the final product [P ] is proportional to ka1S0.

We then formulate the pathway investment minimization problem as the
strategy of minimizing the amount of anabolic substrate for a given flux:

min
{[Ei],[Si],i=1,...,n}

C([Ei], [Si]) subject to n constraints (1)

ki[Ei][Si]

κi + [Si]
= ka1S0 for i = 1, ..., n.

The optimization is over substrate Si and enzyme Ei concentrations. Solving
(1) using Lagrange multipliers results in the following system of equations:

ai = λi
ki[Si]

κi + [Si]
, bi = λi

kiκi[Ei]

(κi + [Si])2
, ka1S0 =

ki[Ei][Si]

κi + [Si]
.

Solving the system of equations gives:

[Si] =

√
ka1S0

κi
ki

ai
bi
,

[Ei] =
bi
aiκi

[Si](κi + [Si]) =

√
ka1S0

biκi
kiai

+
ka1S0
ki

.

Therefore the minimum anabolic investment to achieve a flux ka1S0 through
the enzymatic pathway is:



C =
n∑

i=1

([Ei]ai + [Si]bi) =
n∑

i=1

(
ai
ki
ka1S0 + 2

√
κiaibi
ki

ka1S0

)

The impact of different flux levels on the relative total investment require-
ment is shown in Figure 1. This figure shows that reducing the flux from a
baseline value of 1.0 causes an increase in the relative investment cost, but
increasing the flux leads to a decrease in the relative investment cost. The key
observation we make is thatC(ka1S0) is an increasing, concave down function
of ka1S0:

∂C

∂(ka1S0)
=

n∑
i=1

[
ai
ki

+
1√
ka1S0

√
κiaibi
ki

]
> 0,

∂2C

(∂(ka1S0))
2
= −1

2

n∑
i=1

[
1√

(ka1S0)
3

√
κiaibi
ki

]
< 0.

As a consequence, if one compares the carbon investment, C, needed
to achieve a flux ka1S0 to the investment needed to achieve twice the flux,
2ka1S0, this investment is less than 2C representing an enhanced functional
return on a given anabolic resource investment. From an ecological perspec-
tive, the complete oxidation of a substrate at a fixed flux in a single population
will require more anabolic resource investment (approximately 15% more for
the parameter choices in Figure 1) to achieve than in a food chain of two inter-
acting microbial populations that split the same substrate oxidation pathway.
This observation assumes efficient metabolite exchange between the two food
chain populations.

3 Second Benefit: Inhibitory Byproduct Consumption

All metabolisms have byproducts which can negatively influence chemical
thermodynamics as well as stress microorganisms by creating inhibitory local
environments. Common metabolic byproducts that can be inhibitory include
organic acids and alcohols such as formic acid, acetic acid, ethanol, pyruvic
acid, lactic acid or glycerol. An existing individual-based model of microbial
growth in a biofilm was modified to compare the growth of a monoculture gen-
eralist population to a community of cross feeding populations [14]. Biofilms
are aggregates of cells encapsulated within a polymeric matrix of microbial
origin. Biofilm communities were studied because product inhibition is espe-
cially significant in an environment where metabolite transport is limited to



Figure 1: For a fold change in the flux, the fold change in the total anabolic
resource investment can be higher for a reduced flux or lower for an increased
flux (solid line). The dashed line shows an equal fold change in resource
investment for a desired fold change in flux.

diffusion; convective transport is negligible in typical biofilms [12]. Commu-
nities of different microbial populations are compared in the simulations. The
communities are based on three unique populations:

1. a generalist population that consumes sugar and produces an inhibitory
byproduct (e.g., acetate) as well as CO2,

2. a producer population that consumes sugar and produces only an in-
hibitory byproduct (e.g., acetate), and

3. a scavenger population that consumes the inhibitory byproduct as its
only substrate producing CO2.

These representative microorganisms and their interactions, which are sum-
marized in Figure 2, are relevant to many natural and engineered systems
including the syntrophic consortium studied by Bernstein et al. [3, 4].

Individual-based models, in which individual cells are explicitly modeled
and substrate concentrations are modeled using a continuum approximation,
are a natural choice for biofilm community simulations. Numerous individual-
based models have been developed, and they often focus on different phys-
ical aspects of the biofilm environment, from growth to chemical transport
to detachment [1, 7, 8]. The individual-based biofilm model analyzed here



Figure 2: (a) The monoculture contains only the generalist strain, which
consumes sugar and produces both an inhibitory byproduct and CO2. (b)
The break point in the metabolic pathway, which can represent a number of
commonly observed byproducts, is shown for division of the pathway between
the two specialists. (c) The food chain consists of a producer that consumes
sugar and produces the inhibitory byproduct, and a scavenger that consumes
(and is inhibited by) the byproduct from the producer and secretes CO2.

is described in two sections: (1) the diffusible substrate model, and (2) the
microbial cell model.

3.1 Diffusible Substrate Model

Substrates considered in the biofilm model include a sugar, which serves as
the reduced carbon source for the generalist and producer populations, and a
reduced metabolic byproduct such as acetate or lactate, that is the carbon and
energy source for the scavenger population. Local substrate, S, concentrations
within the biofilm are modeled using the reaction-diffusion equation:

dS

dt
= DS∇2S +

∑
i

(
1

Ys,i

dXi

dt

)
(2)

where DS is the diffusivity of substrate S within the biofilm , Ys,i is the yield
of microbial strain i consuming or producing substrate S, and

(
dXi
dt

)
is the



specific growth rate of the individual microbial cell i. The diffusivity of sugar
is 0.85 mm2/h assuming a six carbon sugar and the inhibitory byproduct
diffusivity is 0.99 mm2/h assuming a short chain organic acid. The other
parameters in equation 2 are dependent on the specific population phenotype,
and are defined in the next section. The domain is assumed to have walls
(i.e., no-flux boundary conditions) on the bottom and sides, while the top is
assumed to have a fixed substrate concentration (1.0 g/L for sugar and 0.0 g/L
for inhibitory byproduct). The initial condition is a concentration of zero for
all substrates set, in part, to capture the initial slow growth phase when the
biofilm is initially being established.

3.2 Microbial Cell Model

While substrates are modeled using a continuum approximation, microorgan-
isms are modeled as discrete cells, which allows each cell to potentially have
a unique metabolism. For the presented study, three microbial populations
are modeled. The growth rates of the generalist population and the producer
population are described by:

dXi

dt
=

(
µiG

KG,i +G

)(
KI,i

KI,i +A

)
Xi

where G is the local sugar concentration (g/L), µi is the maximum specific
growth rate of population i, KI,i is the byproduct inhibition constant for pop-
ulation i, KG,i is the half-saturation constant for population i, and A is the
local byproduct concentration (g/L). The effect of byproduct concentration on
specific growth rate of the producer and generalist populations is shown in
figure 3a where the byproduct acts as an inhibitor to growth. The specific
growth rate of the scavenger population is calculated using:

dXs

dt
=

 µsA

KA +A+ A2

KIA

Xs

where KA is the half-saturation constant and KIA is the byproduct inhibition
constant. The effect of byproduct concentration on the growth rate of the
scavenger population is shown in Figure 3b where the byproduct is both the
sole energy source and inhibitor. The parameter values used in the cell growth
equations are summarized in Table 1.

The individual biofilm model algorithm is implemented using the Python
programming language and is publicly available on github [15]. The algo-
rithm begins with a setup phase where the initial cell distributions and initial
substrate concentrations are set. Then, a time loop is initiated and each time



Param. Value Param. Value Param. Value
µg 0.4 h−1 µp 0.36 h−1 µs 0.4 h−1

KG,g 0.05 g/L KG,p 0.05 g/L KA 0.005 g/L
KI,g 0.04 g/L KI,p 0.15 g/L KIA 0.5 g/L
YG,g 0.15 gX/gG YG,p 0.14 gX/gG
YA,g 0.25 gX/gA YA,p 0.22 gX/gA YA,s 0.3 gX/gA

Table 1: Parameters used in the individual-based biofilm model and where g is
the generalist population, p is the producer population, and s is the scavenger
population. See [5] and references therein for source information.

Figure 3: (a) The effects of byproduct inhibition on the specific growth rate of
the generalist and producer populations at a fixed sugar concentration of 1 g/L,
and (b) the effects of byproduct concentration on the scavenger population
where the byproduct of the producer population is both the sole energy source
and an inhibitor.

step begins with a calculation of the growth of each cell based on the current
substrate concentration at the individual cell location. The mass of each cell is
increased based on the growth rate and time step. Next, the reaction-diffusion
equation is solved to determine updated substrate concentrations. Finally, any
cells that have increased in mass beyond a threshold (twice their initial mass
for the results shown here) are divided into two cells with one occupying the
original location and the other being randomly placed within a cell diameter
of the parent microorganism. If any cells are overlapping, i.e., occupying the
same space, an iterative smoothing process is used to spread out the cells until
no overlap exists.

3.3 Individual-Based Biofilm Model Results

The impact of resource partitioning is illustrated via comparison of three dif-
ferent microbial communities. Initial conditions consisted of 36 cells for all
communities; when interacting communities were analyzed the 36 cells were



System g count p count s count total count
1 389 0 0 389
2 0 288 147 435
3 165 192 109 466

Table 2: Cell counts after simulating 10 hours of growth for an initial
community of 36 cells (evenly divided among the relevant three populations).
g is the generalist population, p is the producer population, and s is the
scavenger population. The values represent the average from 8 independent
simulations.

divided equally between population types, e.g. for the two population com-
munities there were initially 18 cells from each population. The first, and
simplest community consisted of only the generalist population. The second
community consisted of the producer and scavenger populations, and the third
community combined generalist, producer, and scavenger populations.

Table 2 summarizes the final population cell counts after simulating 10
hours of growth for all three communities. In all cases, the initial community
was comprised of 36 total cells that were randomly placed within two cell
diameters of the bottom of the domain. The presented population cell counts
are averages of 8 different simulations. The standard deviation of the 8 simu-
lations based on different random starting locations was 5-10 cell counts. It is
also important to emphasize that in the mathematical model, starting location
is the only source of randomness.

Figure 4a shows a representative cell distribution for a monoculture com-
munity of generalists (green). The cells are drawn larger than their actual size
to facilitate visualization. Cell clustering was a result of random, initial cell
seeding. Figure 4a also shows contours of the byproduct concentration, an
inhibitor for this population. The highest byproduct concentrations are found
in the center of large cell clusters and inhibit cell growth. This is the least
productive community, having the smallest final cell count.

The second community consisted of producer and scavenger populations.
The initial community consisted of 18 cells from each population, and an
example of a final cell distribution is shown in figure 4b. The producer popu-
lation(shown as blue) generated more inhibitory byproduct than the generalist
population; however, the highest byproduct concentrations were comparable
to the generalist monoculture due to the function of the scavenger population
(red). The scavenger population grew fastest in regions of high byproduct
concentration. The average byproduct concentration in this community was
lower than the generalist monoculture, and the overall biomass productivity
(i.e., final total cell count) of the community was significantly ( 10%) higher.



Figure 4: Examples of final microorganism populations after 13 hours
of growth for: (a) a monoculture community comprised of the generalist
population (green circles), (b) a food-chain community consisting of producer
(blue) and scavenger (red) populations, and (c)a diverse community consisting
of all three populations: generalist (green), producer (blue), and scavenger
(red).

The third community was a combination of the first two communities, and
consisted of all three populations considered here: (1) generalist, (2) producer,
and (3) scavenger. The initial community was 12 cells of each population for a
total of 36 cells. As shown in table 2, this combined community had the largest
biomass productivity. An example of a final cell distribution is shown in fig-
ure 4c. In some cases, this community had the highest byproduct concentration
due to the larger populations of generalist and producer. However, the average
concentration never rose significantly higher than the other two communities
due to byproduct consumption by the scavenger population.



4 Conclusions

Microbial food chains can represent an ecologically competitive partitioning
of environmental resources. Resource partitioning via crossfeeding can poten-
tially benefit a community in numerous ways, and two specific advantages are
examined here. First, it was shown through analysis of resource partitioning
into substrate and enzyme pools that division of labor via interaction popula-
tions can maximize cell function (e.g. flux) for a limiting anabolic resource
investment. Second, dividing metabolic processes between cell populations
allows the community to avoid a large accumulation of inhibitory byproducts,
enhancing overall community productivity. Since different metabolic byprod-
ucts present varying degrees of inhibition, resource investment, and energy
demand, there is a wide range of benefits from resource sharing in microbial
communities. As research and commercial interest in microbial consortia in-
creases, a better quantitative understanding of the benefits of resource sharing
will be important for rational engineering and control.
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