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ABSTRACT

Motivation: Highly redundant metabolic networks and experimental
data from cultures likely adapting simultaneously to multiple stresses
can complicate the analysis of cellular behaviors. It is proposed that
the explicit consideration of these factors is critical to understanding
the competitive basis of microbial strategies.
Results: Wide ranging, seemingly unrelated Escherichia coli
physiological fluxes can be simply and accurately described as
linear combinations of a few ecologically relevant stress adaptations.
These strategies were identified by decomposing the central
metabolism of E.coli into elementary modes (mathematically defined
biochemical pathways) and assessing the resource investment cost–
benefit properties for each pathway. The approach capitalizes on
the inherent tradeoffs related to investing finite resources like
nitrogen into different pathway enzymes when the pathways have
varying metabolic efficiencies. The subset of ecologically competitive
pathways represented 0.02% of the total permissible pathways.
The biological relevance of the assembled strategies was tested
against 10 000 randomly constructed pathway subsets. None of
the randomly assembled collections were able to describe all
of the considered experimental data as accurately as the cost-
based subset. The results suggest these metabolic strategies are
biologically significant. The current descriptions were compared
with linear programming (LP)-based flux descriptions using the
Euclidean distance metric. The current study’s pathway subset
described the experimental fluxes with better accuracy than the
LP results without having to test multiple objective functions or
constraints and while providing additional ecological insight into
microbial behavior. The assembled pathways seem to represent a
generalized set of strategies that can describe a wide range of
microbial responses and hint at evolutionary processes where a
handful of successful metabolic strategies are utilized simultaneously
in different combinations to adapt to diverse conditions.
Contact: rossc@biofilms.montana.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Microbial ecology is the study of microbial interactions with
other organisms and their environment. Microbes seem to
have developed a wide range of mechanisms to compete for
potentially scarce resources and to survive under harsh conditions.

Microbe biochemical network structure and regulation are thought
to be driven by competitive adaptations to selective landscapes
(e.g. Lenski and Travisano, 1994; Pfeiffer and Schuster, 2005;
Pfeiffer et al., 2001). The current study seeks to deconstruct
seemingly complex microbial behaviors into a combination of
relatively simple, ecologically relevant stress responses using a
systems biology approach known as elementary mode analysis
(EMA).

Elementary modes are mathematically defined biochemical
pathways that represent the simplest (hence elementary) collections
of enzymes that can function at steady state with all fluxes
occurring in thermodynamically permitted directions (Schuster
et al., 1994, 2000, 2002). EMA is based on a branch of mathematics
known as convex analysis and defines the breadth of all non-divisible
biochemical fluxes within a network; therefore, all steady-state
metabolite flux distributions can be represented as combinations
of elementary modes. Elementary modes are usually distinct from
the linear algebra concept of a basis vector. Unlike a basis set,
an elementary mode set is not typically linearly independent;
however, each elementary mode is genetically independent and
is biologically relevant (Poolman et al., 2004). Basis vectors
are mathematically defined entities which often do not have an
obvious biological interpretation. For instance, a basis vector while
mathematically sound may define flux directions through an enzyme
catalyzed reaction which is not thermodynamically relevant given
a cell’s metabolite concentrations and the culturing temperature.
Discussions on the stoichiometric basis of EMA and other similar
methods can be found elsewhere (e.g. Klamt and Stelling, 2003;
Schuster et al., 2002). Extreme pathways represent a subset of
elementary modes (Klamt and Stelling, 2003).

A common aim of EMA and many other in silico methods
is to predict or to explain complex behaviors using simple,
tractable concepts. A few attempts have been made to explore how
elementary modes can be combined to reconstruct experimental
flux distributions (e.g. Carlson and Srienc, 2004b; Poolman
et al., 2004; Schwartz and Kanehisa, 2005; Wiback et al., 2003;
Wlaschin et al., 2006). None of these approaches considered
the ecologically critical concept of resource investment and
its role in competitive metabolic behaviors. The current study
begins from an ecological perspective that explores the inherent
challenge of investing potentially scarce resources into metabolic
pathways appropriate for a given environment. For instance, each
strategy requires a distinct collection of enzymes with different
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associated investment costs, like the amount of nutrients required
to assemble the proteins. Each collection of enzymes, in turn, has an
associated metabolic efficiency related to the transfer of substrate
potential energy to cellular processes, such as biomass or ATP
generation.

A subset of elementary modes was identified from a much
larger listing of metabolic possibilities using nine competitive
cost–benefit relationships. This subset was used to analyze 13C
fluxome data published by the Sauer research group. The current
study demonstrates that a wide distribution of cellular behaviors
can be accurately described using a limited number of metabolic
strategies. The results and their potential for deciphering microbial
behavior were compared with another recently published study by
Schuetz et al. (2007), who tested an exhaustive set of 99 different
linear programming (LP) objective function/constraint pairs. These
LP simulations were used to describe experimentally measured
fluxes from different culturing conditions (e.g. batch, carbon-limited
and nitrogen-limited chemostat growth). The culturing conditions
required different objective function/constraint pairs to best describe
the flux distributions. The current methodology illustrates how
a single set of ecologically selected elementary flux modes, from a
single simulation, can be assembled to reconstruct flux distributions
with better accuracy, as defined by the Euclidean distance between
prediction and experimental flux, than other current methods while
providing additional ecological insight into the potential bases of
cellular strategies.

2 METHODS

2.1 Metabolic models and EMA
The present study utilizes two previously described Escherichia coli
central metabolism models (Carlson, 2007; Schuetz et al., 2007). The
two models were selected to provide continuity with an earlier study of
the anabolic requirements of metabolic pathways (Carlson, 2007) and to
provide a similar in silico basis for comparing the predictions of the current
methodology with alternative modeling approaches (Schuetz et al., 2007).
Both models consider growth on minimal media with glucose serving as
the sole electron donor and oxygen serving as the sole external electron
acceptor. The metabolic models were decomposed into a complete listing
of genetically independent strategies using EMA. This technique and the
associated algorithms have been described previously (e.g. Schuster et al.,
1994, 2000, 2002). FluxAnalyzer version 5.2 was used to identify the
elementary modes (Klamt et al., 2003, 2007) and the output was processed
using MATLAB (v6.5) and MS Excel.

2.2 Elementary mode cost assessment
The elementary modes were assigned anabolic and catabolic costs to assess
their relative ecological fitness in different environments. The theoretical
basis of the treatment has been described previously (Carlson, 2007). Briefly,
two catabolic costs related to metabolite utilization were considered: one
was associated with the electron donor and a second was associated the
electron acceptor. They were defined as the Cmoles of glucose (electron
donor) consumed per Cmole biomass produced and the moles of O2 (electron
acceptor) consumed per Cmole biomass produced. Four anabolic costs were
considered and were defined as the amount of anabolic resource (carbon,
nitrogen, sulfur or amino acids—which can be correlated to phosphorous)
required to assemble the enzymes utilized in the elementary mode. It was
assumed that each elementary mode is a distinct entity with its own enzymes
and the relative relationship between enzyme flux and enzyme concentration
can be approximated using saturation kinetics arguments.

The present approach avoids absolute enzyme concentrations, which
can be difficult to measure, and instead considers the relative ratio of
enzyme concentrations. At a substrate (electron donor) concentration very
low relative to the half-saturation constant (a.k.a. Monod or Michaelis–
Menten constant), the pathway kinetics can be approximated by a first-order
expression. Under these conditions, the ratio [Ei]/[Ej] between any pair of
enzymes (Ei and Ej) utilized was assumed to be one. At the scarcity extreme,
where substrate collisions with the cell limit flux through an elementary
mode, an enzyme concentration ratio different than one would potentially
represent an unproductive investment of anabolic resources. For purposes of
this study, these pathway costs were referred to as the first-order anabolic
investment costs (Carlson, 2007).

For the other extreme, when substrate concentration is high relative to
the half-saturation constant, pathway kinetics can be approximated by a
zeroth-order kinetic expression. Under these conditions, the ratio [Ei]/[Ej]
is assumed to be proportional to the enzyme flux ratio vi/vj where Ei and
Ej are enzymes participating in an elementary mode, while vi and vj are the
fluxes through these enzymes, respectively. For purposes of this study, these
pathway costs are referred to as the zeroth-order anabolic investment costs.

Metabolic networks are complex systems; this methodology is designed
to bracket a solution space of possible relationships between metabolic flux
and relative enzyme concentrations.

Consideration of free energy changes and activation energy barriers
associated with each enzyme catalyzed reaction is neglected in this analysis.
Conventional thought might suggest that some reactions with larger driving
forces (large negative �G) could have faster rates and would therefore
require lower enzyme concentrations than reactions with near equilibrium or
small free-energy changes to maintain the same flux (Pfeiffer et al., 2001;
Stucki, 1980). Likewise enzyme catalyzed reactions with lower activation
energies may require fewer enzymes than those with higher activation
energies to maintain the same flux. The incorporation of these concepts and
spatial concentration effects like metabolite channeling will be considered
elsewhere.

The catabolic costs and the first-order anabolic investment costs were
calculated from the EMA output file using MATLAB and previously
described techniques (Carlson, 2007). The zeroth-order anabolic investment
costs for each mode were calculated by multiplying the absolute value of each
flux by the investment costs for the associated enzymes. In matrix form, this
operation is:

Z=AI (1)

where Z is the matrix with each row containing the zeroth-order investment
requirements for an elementary mode, A is the elementary mode matrix
with rows populated by the positive magnitude of reaction fluxes in a
given mode and I is the investment matrix with each row comprised
of carbon, nitrogen, sulfur and amino acid costs for a specific model
reaction. To create a standard basis for comparison, the reported zeroth-order
investment requirements were normalized with respect to flux through the
biomass synthesis reaction. The anabolic investment matrix I can be found
in Carlson (2007), or in the Supplemental Material (Table S1) accompanying
this article.

2.3 Minimization envelope analysis
Decomposition of robust networks into elementary modes often results in
millions of genetically independent strategies (Carlson, 2007). Efficient data
mining techniques are required to separate ecologically relevant solutions
from the numerous mere mathematical solutions. The current study assumes
that E.coli has evolved under competition for resources. Therefore, the
selected solutions involve the economical use of finite anabolic and catabolic
resources to produce biomass and cellular energy.

All elementary modes representing cellular growth were data mined
for metabolic strategies that minimized pairwise combinations of pathway
associated costs. The continuous range of strategies is referred to as a
minimization envelope (MinE) (Carlson, 2007; Carlson and Srienc, 2004a;
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Vijayasankaran et al., 2005). Nine MinEs were considered. For each of the
nine cases, the abscissa was the electron donor catabolic cost (Cmoles of
glucose consumed per Cmole biomass produced), while the ordinate was
varied to consider the electron acceptor catabolic cost (moles O2 consumed
per Cmole biomass produced) or one of the eight anabolic investment cost
scenarios.

The presented approach is analogous to industrial design processes
where competing designs are compared on both investment (anabolic)
costs and operating (catabolic) costs. The most competitive design is a
function of numerous factors including location-dependent considerations
like construction costs, labor costs, raw material, utility costs and local tax
laws. Likewise, the most competitive metabolic strategy may change as a
function of culturing conditions as well as the availability of electron donor,
electron acceptor or anabolic resources like nitrogen or phosphorous.

2.4 Generation of artificial experimental flux
distributions

Artificial metabolic flux distributions, which have not been optimized by
evolution, were generated using two different strategies. Prior to generation
of artificial fluxes, the elementary modes were normalized to a glucose uptake
reaction flux of one. The first approach selected a random number of the
total possible biomass producing modes (1–197 018) and then assigned a
random weighting factor to each mode. The weighted modes were summed
to create a flux vector. To replicate experimental error, each of the fluxes in the
vector was then randomly and independently perturbed by a value between
±5%. The second approach randomly selected between 1 and 100 elementary
modes with carbon yields that were greater than or equal to the smallest
carbon yield identified on a MinE (see below). Each mode was then assigned
a random weight and summed to create an artificial flux distribution. As with
the previous case, each of the fluxes was then randomly and independently
perturbed by a value between ±5%.

3 RESULTS

3.1 Identification of ecologically competitive metabolic
strategies based on zeroth-order anabolic
investment costs

Analysis of pathway resource requirements was expanded beyond
the previously described first-order investment approximation
(Carlson, 2007). Four zeroth-order anabolic investment MinEs
were calculated. Figure 1 illustrates the MinE for the zeroth-order
treatment of nitrogen investment as a function of electron donor
operating costs. Modes along the MinE minimize the combined
costs and therefore represent a competitive cost–benefit relationship
between nitrogen investment into enzymes and the efficiency
of the resulting pathway to convert glucose into biomass. The
network’s highest carbon yielding strategy requires a relatively
large investment of nitrogen to assemble the required enzymes.
The elementary mode with the smallest requirement for nitrogen
is not very efficient at converting glucose into biomass. Figure S1
in the Supplementary Material includes plots which highlight the
MinE region in more detail. All modes not on the MinE represent
less competitive metabolic strategies for the considered culturing
conditions. It is assumed that E.coli toggles between different MinE
strategies based on the availability of resources like electron donors,
electron acceptors and anabolic nutrients. The large number of
points near the MinE represents the robustness of the network
and illustrates the huge number of alternative strategies with very
comparable investment and operating properties. Figure S2 in the
Supplementary Material highlights enzyme usage patterns as a

Fig. 1. MinE analysis. The approximate MinE is highlighted with the
dashed line for the electron donor operating costs (Cmole glucose per
Cmole biomass) versus zeroth-order nitrogen investment (nitrogen atoms
per pathway) cost–benefit case. Each circle represents one unique elementary
mode. The x-axis coordinate represents the efficiency of the elementary mode
at converting glucose into biomass. Small costs represent high efficiency.
The y-axis coordinate plots the nitrogen required to assemble the enzymes
utilized by the elementary mode assuming a zeroth-order dependence on
substrate concentration (see text for more details). Modes along the MinE
minimize the combined costs and therefore represent a competitive cost–
benefit relationship between nitrogen investment into enzymes and the
efficiency of the resulting pathway for converting glucose into biomass.
The arrow in the upper left highlights the network’s most efficient strategy
(lowest operating cost), which has a relatively high nitrogen requirement. The
arrow in the lower right highlights the pathway with the smallest nitrogen
requirement, which has a relatively high glucose operating cost. The plot
scale permits approximately 1.5 million of the 2.6 million possible pathways
to be shown. Pathways not shown have uncompetitive nitrogen investment
and glucose operating costs.

function of doubling time and anabolic resource availability for the
zeroth-order investment assumption.

3.2 Assembly of ecologically competitive pathway
subset

The primary goal of this study was to assemble a subset of metabolic
pathways which can be used to describe and interpret a range of
metabolic behaviors. The subset was assembled using the elementary
modes located on the nine MinEs. If the current methodology is to
be seriously considered, it needs to offer advantages over existing
techniques. To facilitate the comparison of the current approach with
other in silico methods, the model from Schuetz et al. (2007), with
a few modifications, was adopted. The reaction file can be found in
the Supplementary Material along with the anabolic requirements
for each model reaction.

The Schuetz-based model contained 284 864 elementary modes
with 197 018 representing cellular growth. MinE analysis of the
growth modes using the nine envelopes identified a subset of
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elementary modes which represent an ecologically competitive
usage of the network. Because of fixed amino acid elemental ratios,
there were numerous pathway redundancies on the nine MinEs. The
redundancies were removed resulting in 38 unique pathways. These
modes are listed in the Supplementary Material (Table S2). The
Supplementary Material also contains a hierarchical clustering of
the 38 pathways which illustrates the overlap found between the
different investment strategies (Figure S3).

The experimentally measured carbon metabolism in Schuetz et al.
has 10 systematic degrees of freedom. Therefore, the carbon flux
distribution can be described using 10 split ratios at pivotal branch
points. The split ratio approach permits a reasonable comparison of
flux distributions, which often vary widely. The 10 split ratios were
calculated for each of the elementary modes found along the MinEs
and are listed in the Supplementary Material. For the considered
model, 23 reactions define the 10 experimental split ratios.

3.3 Non-negative least squares assembly of a
physiological state

It is hypothesized that the ecologically competitive subset of
elementary modes can be used to predict and describe a wide
variety of cellular behaviors based on linear combinations. Given
a physiological flux distribution v and the subset of ecologically
competitive elementary modes E [note: matrix E is arranged
in a transpose fashion relative to A described in Equation (1)],
a weighting vector w is sought which satisfies the following
expression:

v=Ew (2)

Before solving Equation (2) for the weighting vector w, the problem
was recast in terms of the 23 reactions that define the model’s
carbon metabolism. The E and v elements from Equation (2) were
condensed into the reactions required to define the system split ratios
and renamed with an (s). For the considered model, the vector vs

is comprised of the 23 experimentally reported 13C fluxes and the
matrix Es is the listing of the 38 elementary modes condensed into
the carbon metabolism defining reactions.

vs = Esw (3)

Linear regression analysis was performed to identify the vector
w using MATLAB and the Lawson and Hanson (1974) non-
negative least squares algorithm. The algorithm iteratively solves
the following relationship for the weighting vector w:

Minimize ||Esw−vs|| where wi � 0 for all i (4)

Elements of w were constrained to non-negative values because
the growth elementary modes are not reversible. The least squares
analysis weighting factors represent the contribution of each mode
to the overall system physiology. The results represent a best fit; a
statistical analysis is given below. The weighting factor vectors (w)
for the experimental culturing conditions are listed in Supplementary
Table S4. The best fit for each experimental growth condition
requires only three or four vectors from the set of 38.

This approach was used to decompose four experimentally
reported physiologies, representing batch growth, carbon-limited
chemostat growth (dilution rate (D) = 0.1/h and 0.4/h), and nitrogen-
limited chemostat growth (D = 0.4/h), into fluxes that can be assigned
to different competitive resource usage strategies. Figure 2 plots the
percentage of the overall flux distribution that can be assigned to the

Fig. 2. Resource-based stress adaptation to four culturing conditions.
Fluxes from four culturing conditions were decomposed into different
resource-based stress responses. The graph area is proportional to the
percentage of the fluxes (based on glucose transport) associated with the
different stress responses (dark gray = oxygen stress; light gray = first-order
investment stress; striped = zeroth-order investment stress; black = highest
yielding growth). Three different metabolic model investment scenarios were
considered based on different isozymes. The standard investment analysis
considered isozymes deemed most likely to be utilized based on current
literature. The low investment analysis utilized the isozyme with the fewest
amino acids, while the high investment analysis considered the isozyme with
the most amino acids. See text for more details.

different ecological strategies. Percentages are based on flux through
the glucose transport reaction. The results suggest that under many
growth conditions, microbes simultaneously respond to multiple
stresses. For instance, the batch growth case suggests that the
overall metabolism is a combination of the optimal biomass yielding
strategy combined with oxygen and anabolic resource stress.

The flux distribution for the carbon limited (D = 0.4/h) case
suggests these culturing conditions are close to ideal permitting
the acquisition of the required nutrients in appropriate ratios for
this E.coli strain. Approximately 91% of the flux can be assigned
to the highest biomass yielding network usage, while the balance
is associated with first-order anabolic investment stress. Culturing
conditions that result in the expression of the highest yielding
metabolism are likely strain specific. Therefore, the contributions
from each of the 38 ecological modes would likely differ, at least
slightly, between strains for identical culturing conditions.

The accuracy of the presented approach was compared to the
best results from the 99 LP simulations considered in Schuetz et al.
(2007). The LP output from that study was kindly provided by
R. Schuetz and U. Sauer. The current method exceeds the accuracy
of the LP-based methods for all four considered growth conditions,
based on Euclidean distance between the reconstructed split ratio
vectors and the experimental split ratio vectors (Table 1).
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Table 1. Accuracy of in silico descriptions of experimental fluxes

Euclidean distance

Growth conditions Ecological costs based LP-based

Batch growth 0.152 0.478
Glucose limited chemostat
(D = 0.1/hr)

0.267 0.700

Glucose limited chemostat
(D = 0.4/hr)

0.196 0.287

Nitrogen limited chemostat
(D = 0.4/hr)

0.251 0.440

Smaller Euclidean distances represent a more accurate description of measured fluxes.
The current ecological costs-based analysis was compared with LP-based methods using
13C fluxome data found in Schuetz et al. (2007). The LP methods are presented there
as well. The Euclidean distances are measured between dimensionless split ratios and
do not have units.

Least squares analysis has been applied previously to metabolic
flux analysis in the classic Vallino and Stephanopoulos(1990; 1993)
papers. In these studies, experimentally measured metabolite
accumulation rates were mapped to intracellular reactions using least
squares analysis. The current study utilizes more recent experimental
and computational approaches. 13C-based intracellular flux
measurements are used with mathematically defined biochemical
pathways to describe a cellular metabolism as a combination of
different ecological cost-based strategies.

3.4 Statistical significance of calculated flux
distributions

Elementary modes do not typically form a linear basis for a
metabolic network’s permitted flux space (Poolman et al., 2004;
Schwartz and Kanehisa, 2005). Solutions presented above represent
a best fit of E to v by minimizing the error found in Equation (4).
To assess the biological relevance of the assembled subset, the
current results were tested for statistical significance by comparing
their accuracy against randomly assembled subsets of elementary
modes.

MATLAB was used to construct 10 000 elementary mode subsets
each comprised of 38 randomly selected modes. The modes were
taken from the 197 018 growth modes identified for this biochemical
model. The random sets were condensed into the 23 reactions which
define the carbon metabolism (Rs). The ability of these random
subsets to accurately describe the experimentally reported fluxes
was assessed using the same procedure described above except that
the random matrix (Rs) was substituted for the ecological cost-based
matrix (Es). Briefly, non-negative least squares analysis was used to
find the best fit of the random subset to the experimental fluxes, the
best fit metabolism was used to calculate the 10 system split ratios,
and the Euclidean distance between this computational split ratio
vector and the experimental split ratio vector was calculated.

Of the 10 000 randomly assembled subsets, ∼0.6% outperformed
the ecological set’s accuracy at describing the batch data, ∼2.9%
outperformed the ecological set’s accuracy at describing glucose-
limited chemostat growth (D = 0.1/h), ∼5.2% outperformed the
ecological set’s accuracy at describing glucose-limited chemostat
growth (D = 0.4/h) and ∼1.7% outperformed the ecological
set’s accuracy at describing nitrogen-limited chemostat growth

Table 2. Biological significance of flux descriptions

Growth conditions P-value Average no.
pathways, random

No. pathways,
costs-based

Batch growth 0.0056 8.7±1.1 4
Glucose limited
chemostat (D = 0.1/hr)

0.0288 7.1±1.2 3

Glucose limited
chemostat (D = 0.4/hr)

0.0515 8.0±1.3 4

Nitrogen limited
chemostat (D = 0.4/hr)

0.0172 7.5±1.2 4

All four conditions ≤0.0001 n.a. n.a.

The ecological costs-based flux descriptions were compared with 10 000 random
pathway sets for accuracy. The P-value is based on the occurrence of random pathway
subsets which outperformed the costs-based subset at describing experimental data.
None of the 10 000 random sets outperformed the costs-based descriptions with all four
culturing scenarios. The number of pathways required for the least squares analysis best
fit is shown for both the random subsets and the costs-based subset, n.a. = not applicable.

(D = 0.4/h) (Table 2). Considering a P�0.05 to represent statistical
significance, the ecologically based subset is statistically significant
with three of the four experimental datasets. The glucose-limited
chemostat (D = 0.4/h) data with a P-value of 0.052 represents a
special case; ∼91% of the flux distribution can be assigned to
a single elementary mode. The randomly selected subsets which
by chance contain this elementary mode would achieve ∼91%
of the flux distribution from a single mode. The additional 37
modes would then permit additional refinement. None of the 10 000
randomly assembled sets had an accuracy that met or exceeded the
ecologically based subset on all four growth conditions. If all four
culturing conditions are considered, the statistical significance of
the assembled subset is at least 99.99%. The random subset fits
utilized linear combinations of more pathways than the ecological
costs-based subset (Table 2). The random subsets that out performed
the costs-based subset utilized on average between 7.1 and 8.7
pathways. In comparison, the ecological costs-based subsets used
either three or four pathways. The accuracy of the observed flux
descriptions seems to confirm the biological relevance of the
cost-based subset.

Some of the randomly assembled subsets that surpassed the
ecologically based subset at describing the batch growth, data
were analyzed for their properties with regard to the MinEs. Not
surprisingly, the well-performing randomly assembled subsets had
numerous elementary modes that plotted near the MinEs (data not
shown).

3.5 Sensitivity analysis of investment costs
The sensitivity of the presented results to the anabolic investment
matrix was tested by varying the considered isozymes. Three
separate investment matrices were constructed based on the anabolic
requirements of different isozyme sets. The standard investment
matrix was assembled using current literature to select the isozyme
most likely to be utilized. A high investment matrix was assembled
by selecting the isozymes with the highest amino acid count per
functional enzyme complex and a low investment matrix was
assembled by selecting the isozyme with the smallest amino acid
count per functional enzyme. For example, there are two considered
phosphofructokinase enzymes (FbaA and FbaB). Each of these
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homomultimeric enzymes has a different amino acid sequence and
FbaA is thought to be comprised of four identical subunits, while
FbaB is thought to be comprised of two identical subunits (Keseler
et al., 2005). A functional FbaA enzyme requires 1280 amino acids,
while a functional FbaB enzyme requires 618 amino acids. FbaAwas
considered in the standard cost investment matrix (Keseler et al.,
2005) and in the high cost investment matrix. FbaB was considered
for the low cost investment matrix. The investment matrices are
given in the Supplementary Material (Tables S1 and S5).

The elementary mode output was processed to calculate the
anabolic investment costs for each of the 197 018 modes using
the three investment scenarios. The nine MinEs were determined
for each investment scenario and the datasets were processed
as described above. The low investment scenario resulted in a
subset of 39 unique pathways, while the high investment scenario
resulted in a subset of 44 pathways. The contribution of highest
yielding fluxes, first-order anabolic investment stress, zeroth-order
anabolic investment stress and oxygen stress are shown in Figure 2.
The contributions from each stress category are very similar
for all three investment scenarios. The results suggest that the
analysis is reasonably insensitive to the different isozyme investment
considerations.

3.6 Perturbation analysis of experimental flux vector
The numerical stability of the reported weighting vectors was tested
by randomly and independently perturbing each of the fluxes in
the experimental flux vector vs within the reaction’s experimental
confidence range [values given in Supplementary Material of
Schuetz et al. (2007)]. The perturbed vector was then analyzed
with non-negative least squares analysis. This process was repeated
10 000 times. The weighting factors for the batch growth case are
shown in Figure 3 as histograms. Occasionally, different modes
would be utilized for the least squares fitting. This occurrence
was rare and Figure 3 shows the histogram of the mode with
the highest average weighting factor besides the four previously
identified best fit modes. The simulations indicate that the weighting
vector elements are quite stable to perturbations, suggesting that
measurement error had little impact on the results of this study.

3.7 Null hypothesis testing
The presented studies suggest the experimentally measured fluxes
are the result of competitive cost–benefit tradeoffs. To further
strengthen this argument, a null hypothesis experiment was
formulated that explores artificial metabolic flux distributions that
have not been optimized by evolution. Two separate strategies
were used to generate sets of 1000 artificial null hypothesis flux
distributions (see Section 2). The same analysis as described above
was performed except the artificial flux distributions (n) replaced the
measured physiological fluxes (v). For each of the 1000 artificial flux
vectors, the accuracy of the ecological set to describe the fluxes was
compared to 1000 sets of 38 randomly selected elementary modes.

Using the flux distributions generated from the entire set of
elementary modes, the random sets more accurately described the
artificial flux distributions almost without exception. The ecological
set outperformed the random set on only 26 comparisons out of
the 1 million scenarios. Using the flux distributions generated from
1–100 modes with carbon yields at least as good as the modes
identified from the MinE analysis revealed that the random sets

(a) (b)

(c)

(e)

(d)

Fig. 3. Perturbation analysis of non-negative least squares weighting
factors. The sensitivity of the predicted weighting factors was tested
using the batch growth data. Each measured flux was randomly perturbed
independently within the experimental confidence range. Least squares
analysis was then performed using the perturbed fluxes and the ecologically
competitive pathways. The analysis was repeated 10 000 times. The
weighting coefficients are plotted as a histogram. (a) Primary oxygen stress
pathway weighting factor, (b) optimal carbon yielding metabolism pathway
weighting factor, (c) secondary oxygen stress pathway weighting factor
and (d) first-order investment stress pathway weighting factor. Occasionally
additional modes would be utilized during the least squares analyses. (e)
Highlights the mode with the highest average value. The ordinate in (e) has
been truncated for consistency with the other plots a–d.

still out competed the ecologically relevant set 97.7% of the time.
The ecological set of elementary modes is sufficient to describe the
natural metabolite fluxes but is not sufficient to describe the artificial
flux distributions.

4 DISCUSSION
A method was developed to mine the genomic potential of an
organism for its ability to competitively adapt to simultaneous
anabolic and catabolic pressures. The current study utilizes a
single simulation and identifies a small subset of pathways from
the inclusive EMA output file. The presented methodology uses
this single set of strategies to describe a number of culturing
conditions removing the need to test an exhaustive set of LP
simulations with different objective functions and constraints for
each growth condition. The accuracy of the presented metabolic flux
descriptions were compared with an existing LP method and found
to be more accurate. The statistical significance of the cost-based
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pathway subset was assessed by comparing their accuracy to
10 000 random subsets of pathways. None of randomly assembled
subsets beat the ecologically competitive subset at describing all
four considered growth scenarios. In addition, the random subsets
required approximately two times more pathways to create a best fit
as compared with the ecologically selected subset. The ecologically
competitive pathways seem to be biologically significant.

The identified pathways provide an ecological explanation for
overflow metabolisms observed at both nutrient starvation and
nutrient excess conditions (Majewski and Domach, 1990; Teixeira
de Mattos and Neijssel, 1997). Many enzymes utilized in high-
yielding pathways, which efficiently oxidize glucose to CO2, are
anabolically expensive to assemble. For example, the complete
oxidative tricarboxylic acid cycle (TCA) requires the expensive α-
ketoglutarate dehydrogenase complex. Under conditions of nutrient
limitation, the current study suggests it is more competitive to utilize
pathways with enzyme sets that require less resources to assemble.
Under conditions of nutrient excess, a condition of nutrient stress
is likely created by the unbalanced uptake of the various anabolic
resources. It is hypothesized that the anabolic stress identified
during batch growth is due to a limiting rate of NH3 diffusion.
In M9 minimal media, the nitrogen source NH3 must diffuse
into the cell via passive transport, while all other major elements
have active transport systems (Conroy et al., 2007; Neidhardt,
1996). An analysis of published experimental data indicates that
adding amino acids to minimal media typically results in much
higher culture growth rates (Andersen and von Meyenburg, 1980).
Amino acids have active transport systems potentially permitting
a higher nitrogen influx. The amino acid transport would also
increase carbon flux into the cell, but this increase is not likely the
reason for the increased growth rates. Aerobically growing E.coli
batch cultures utilize a specific glucose consumption rate which is
approximately one-fourth the rate observed during anaerobic batch
growth (Hempfling and Mainzer, 1975). If carbon were limiting
growth, the cell could likely increase the specific glucose transport
rate.

The set of identified pathways is comprised of 38 modes however,
only 12 were utilized during the analyses (Table S4). This suggests
that the ecologically relevant subset can be pared down even further
which would certainly improve the statistical significance. It seems
E.coli has adapted to stresses in a manner that can be described by
the MinE approach, but the cells may not utilize every competitive
metabolic adjustment. Instead, the cells appear to adopt strategies
that approximate the envelope. This could be viewed as a cost–
benefit arrangement. The cost of maintaining a regulation system
which permits very fine adjustments is likely not offset by the
associated benefit.

High-dimensional datasets can often be accurately represented
as a linear combination of a limited number of vectors identified
using eigen-decomposition methods. Techniques like principle
component analysis and singular value decomposition have been
applied to elementary mode sets (Price et al., 2003; Van Dien
et al., 2006). The current set of 197 018 biomass producing modes
was decomposed into a vector set which maximized projected
variance using principle component analysis. Twenty-two principle
components were required to capture 99.9% of the elementary
mode set variance (Figure S4). Least squares analysis was used
to determine if the most significant principle components were
consistent with a linear combination of the 38 ecological modes.

The ecological modes were not sufficient to define any of the first 22
principle components. The principle components were also used to
reconstruct the four considered experimental flux distributions using
least square analysis. Unlike the study using elementary modes, the
least squares study utilizing principle components was not restricted
to non-negative values because the principle components do not have
obvious biological meaning. The first 18 principle components were
required to outperform the ecologically relevant modes at all four
experimental flux distributions. As a comparison, only 12 of the
ecologically relevant modes were required for this analysis. The set
of ecologically relevant modes is distinct from the first 22 principle
components.

EMA defines a convex cone which contains all possible steady-
state flux distributions constrained to biologically relevant flux
directions. Figure 1 represents a 2D bisection of that cone. The
principle component of the convex cone would likely run through
the center of the cone (Price et al., 2003). The arc defined
by the MinE in the 2D plot would not be sufficient to define
such a principle component. While principle components have a
meaningful mathematical definition, the biological meaning is less
clear. For instance, unlike the actual elementary modes, the principle
components are not constrained to values that correspond with
biologically relevant fluxes. As an example, approximately half of
the identified principle components had negative glucose uptake
rates which do not have a biological interpretation.

The identified metabolic pathways seem to represent a general
set of strategies that are utilized in different combinations to
adapt to a range of environments. The predicted enzyme usage
patterns are consistent with many of the reported universal stress
response adaptations (Nachin et al., 2005; Nyström and Neidhardt,
1993). Using a small set of competitive strategies selected through
evolution, the cell would only need to adjust its metabolic regulation
to adapt to a wide range of new environmental conditions. This
would represent a fairly quick response to changing circumstances
as compared with the slower ecological adaptation associated
with strategies like horizontal gene transfer (Woese, 2002) or the
evolution of new proteins. It has been reported that E.coli can adapt
its regulation scheme in as little as 100 generations (Tagkopoulos
et al., 2008).

The MinE used in this analysis has conceptual similarities to
tradeoff curves used in the ecological analysis of species competition
(Tilman, 1999). A common ecological application of tradeoff curves
is to predict if different species are capable of coexistence or
whether a new species can invade and replace another established
species. The presented MinE analysis utilizes the same ideology
of competition and invasiveness except the MinE analysis looks
at the competitiveness of different metabolic regulation schemes.
The MinE analysis predicts which regulation schemes could coexist
(those that lay on the MinE) and which regulation schemes could
‘invade and replace’ other regulation schemes (the MinE could
replace an alternative regulation scheme with a cost–benefit curve
further from the origin). This study supports the proposition that
metabolic regulation has been shaped by natural selection forces
similar to those that influence macro-scale ecological landscapes.
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