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Summary

Assimilatory and dissimilatory utilisation of autotroph

biomass by heterotrophs is a fundamental mechanism

for the transfer of nutrients and energy across trophic

levels. Metagenome data from a tractable, thermoacido-

philic microbial community in Yellowstone National Park

was used to build an in silico model to study heterotro-

phic utilisation of autotroph biomass using elementary

flux mode analysis and flux balance analysis. Assimila-

tory and dissimilatory biomass utilisation was

investigated using 29 forms of biomass-derived dis-

solved organic carbon (DOC) including individual

monomer pools, individual macromolecular pools and

aggregate biomass. The simulations identified ecologi-

cally competitive strategies for utilizing DOC under

conditions of varying electron donor, electron acceptor

or enzyme limitation. The simulated growth environment

affected which form of DOC was the most competitive

use of nutrients; for instance, oxygen limitation favoured

utilisation of less reduced and fermentable DOC while

carbon-limited environments favoured more reduced

DOC. Additionally, metabolism was studied considering

two encompassing metabolic strategies: simultaneous

versus sequential use of DOC. Results of this study

bound the transfer of nutrients and energy through

microbial food webs, providing a quantitative foundation

relevant to most microbial ecosystems.

Introduction

Nutrient and energy transfers across trophic levels are

essential in nearly all environmental, industrial and medical

microbial ecosystems. Primary producers obtain nutrients,

including carbon, often via autotrophy using energy from

chemolithotrophy or phototrophy. Heterotrophic utilisation

(e.g., predation, decomposition and metabolite exchange)

of resources from primary production requires nutrient

assimilation and dissimilation, which contributes directly

to biogeochemical cycling. Theoretical and experimental

analysis of resource transfer between trophic levels is chal-

lenging due to the diversity of biomass constituents (i.e.,

macromolecules, monomers, cofactors, free metabolites

and minerals), the complexity of biochemical networks and

the number of intercellular metabolite exchanges that occur

within microbial communities. Generalized kinetic models

have been used for decades to analyze processes such as

wastewater treatment (Grady et al., 2011), composting

(Mason, 2006) and carbon flow in sediments (Arndt et al.,

2013). However, these analyses typically use generic,

instead of organism specific, yields or rates because direct

measurements for each participating population of microor-

ganisms and substrates are challenging to obtain.

Most naturally occurring, mesophilic ecosystems are

complex assemblages of archaea, bacteria, eukaryotes

and a multitude of potential nutrients and energy sources.

For instance, a gram of soil has an estimated 1032106

species representing all three domains of life and numer-

ous trophic levels from primary producers to decomposers

(Dance, 2008). These ecosystems are too complex to rep-

resent using current molecular-level modelling methods

without major simplifications. Relatively simple microbial

mat communities, like those found in high-temperature

environments of Yellowstone National Park (YNP), are

tractable systems for examining assimilatory and dissimila-

tory biomass utilisation. High-temperature acidic, iron-

oxidizing microbial mats found in YNP have been studied

extensively (Kozubal et al., 2012; Inskeep et al., 2013;
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Jennings et al., 2014) and provide ideal model systems for

examining nutrient and energy transfer across trophic lev-

els (i.e., assimilatory and dissimilatory biomass utilisation

Fig. 1A). High temperature (65–75�C) and low pH (3–3.5)

contribute to the simplicity of these microbial communities

by precluding growth of photosynthetic organisms and

eukaryotes (Breitbart et al., 2004; Boyd et al., 2009;

Rohwer et al., 2009).

A well-studied system in One Hundred Springs Plain,

Norris Geyser Basin YNP, contains 5–7 dominant microbial

populations, of which 2–3 are metabolically active in the

oxic region based on metagenomic analyses (Kozubal

et al., 2012; Inskeep et al., 2013; Jennings et al., 2014).

Metallosphaera yellowstonensis str. MK1 is a dominant pri-

mary producer in these mats, and has been shown to fix

inorganic carbon (DIC) during aerobic oxidation of ferrous

iron (Kozubal et al., 2011; Jennings et al., 2014). The

numerically dominant heterotroph (30–50% of the total

aerobic community) in these mats is an archaeon from the

newly described group of Geoarchaeota, referred to here

as Geoarchaeum str. OSPB (Kozubal et al., 2012; 2013).

This organism functions as an aerobic chemoorganoheter-

otroph based on metabolic analysis of metagenome

assemblies (Kozubal et al., 2013). Viral lysis and senes-

cence are two candidate mechanisms for the release of

resources derived from chemolithoautotroph biomass uti-

lised by heterotrophic organisms including Geoarchaeum

str. OSPB (Breitbart et al., 2004; Rohwer et al., 2009). M.

yellowstonensis str. MK1 and Geoarchaeum str. OSPB

both require oxygen as a terminal electron acceptor for

growth and cellular energy production, and in situ analysis

of oxygen as a function of mat depth indicated that oxygen

diffusion, not reaction rate, is rate-limiting for aerobic

growth (Bernstein et al., 2013). Therefore, the autotroph

and heterotroph may compete for this limiting resource.

Metagenome-enabled stoichiometric modelling can

examine molecular-level phenomena without requiring

extensive kinetic parameters. Stoichiometric modelling of

metabolic systems identifies all possible genome-encoded

physiologies, including ecologically relevant optimal and

suboptimal phenotypes for nutrient utilisation (Klamt and

Stelling, 2003; Reed and Palsson, 2003; Trinh et al., 2009;

Orth et al., 2010). There are two widely applied methods of

stoichiometric modelling. Flux balance analysis (FBA) is

an optimisation approach that uses a metabolic model to

determine possible routes of nutrient flow that, for

Fig. 1. Conceptual representation of high-temperature acidic Fe(III)-oxide microbial mats.

Primary productivity was represented by the chemolithoautotroph, Metallosphaera yellowstonensis str. MK1, which fixes carbon dioxide through

iron oxidation and provides potential carbon and energy sources for community heterotrophs. Community heterotrophy was represented by

Geoarchaeum str. OSPB, a numerically dominant heterotroph in the mats. Exchanges of nutrients and energy across trophic levels were

analyzed considering 29 different biomass-derived dissolved organic carbon (DOC) (B) ranging from individual monomers to macromolecules

to aggregate autotroph biomass. Simulations also explored two distinct heterotroph strategies: simultaneous versus sequential metabolism of

DOC pools (C).
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example, maximize biomass production assuming a sub-

strate utilisation rate (Varma et al., 1993). Elementary flux

mode analysis (EFMA) is an unbiased stoichiometric

modelling method that enumerates the smallest set of gen-

otypes that describe nutrient flow through a metabolic

model (elementary flux modes, EFMs) (see Supporting

Information Fig. S1 for a detailed description). Nonnegative

linear combinations of EFMs can represent all feasible

phenotypes of the modelled organism (Schilling et al.,

2000; Klamt and Stelling, 2003; Llaneras and Pic�o, 2010).

EFMA has enabled both strain development and communi-

ty analysis without prior knowledge of the function of an

organism (Carlson et al., 2002; Taffs et al., 2009).

Stoichiometric modelling has been used to study micro-

bial community ecology (Stolyar et al., 2007; Taffs et al.,

2009; Zhuang et al., 2011; Cerqueda-Garc�ıa et al., 2014);

however, an assessment of assimilatory and dissimilatory

uses of biomass-derived, dissolved organic carbon (DOC)

as mechanisms of nutrient and energy transfer across tro-

phic levels has not been conducted. This study examined

biomass and cellular energy production in a tractable

microbial mat community from YNP. Study aims were to

(1) identify the optimal biomass-derived DOC for biomass

and cellular energy production by heterotroph Geoarch-

aeum str. OSPB as a function of different environmental

scenarios (i.e., DOC-, oxygen- and enzyme-limitation), (2)

develop a relationship between microbial community mem-

ber abundance based on intertrophic nutrient transfer, (3)

contrast simultaneous and sequential metabolism of

biomass-derived DOC for heterotroph biomass and cellular

energy production and (4) predict distribution of byproducts

during metabolism of biomass-derived DOC.

Results

Construction of in silico model and application of
ecological theory

An in silico stoichiometric model was built to dissect potential

autotroph-heterotroph interactions based on utilisation of

autotroph biomass components. Inorganic carbon fixed by

M. yellowstonensis str. MK1 (hereafter termed autotroph)

was modelled as the source of reduced carbon for the micro-

bial community (Fig. 1A). Community heterotrophy was

represented by Geoarchaeum str. OSPB (hereafter termed

heterotroph) utilisation of autotroph biomass components

(Jennings et al., 2014). Heterotroph utilisation of autotroph

biomass was simulated using 29 forms of biomass-derived

DOC ranging from individual monomer pools (e.g., alanine),

macromolecular pools (e.g., protein), to aggregate biomass

(Fig. 1B and Table 1). The composition of monomers, macro-

molecules and aggregate biomass were based on genetic

attributes of the autotroph and assumptions detailed in the

Materials and Methods. The geothermal source water was

assumed to contain nonlimiting quantities of ammonium,

phosphate, sulfide and all micronutrients. All other nutrient

exchanges were modelled as depicted in Fig. 1A. The meta-

bolic modell with metagenome justification and data verifying

atom and electron conservation can be found in the Support-

ing Information.

The metabolic model was analyzed using EFMA and

FBA. Biologically relevant flux distributions, represented as

EFMs or FBA optimisation solutions, were identified using

ecological resource allocation theory, which assumes an

organism will maximize the utility of a limiting resource (Taffs

et al., 2009; Beck et al., 2016). The theory was applied to

the complete set of EFMs by calculating the resource costs

of each EFM as defined by the amount of reduced carbon

source (biomass-derived DOC), electron acceptor (oxygen)

or enzyme resource (e.g., nitrogen, sulfur, iron or cell vol-

ume) required to produce either biomass or cellular energy

(phosphodiester bond equivalents). Figure 2 provides a

graphical representation of the analysis concepts using

aggregate biomass as the example DOC. The enzyme

resource cost for biomass and cellular energy production

(Fig. 2C and D, respectively) was modelled by summing the

number of participating reactions in each EFM, which is pro-

portional to the number of participating enzymes and

therefore, the amount of enzyme resource required to syn-

thesize these enzymes (Folsom and Carlson, 2015). This

approach approximates all enzyme complexes to be the

same size with the same amino acid distribution.

For every EFM, pairs of resource costs for biomass or

cellular energy production were plotted to define tradeoff

curves or ‘pareto fronts’ (Fig. 2) (Beck et al., 2016), which

identified the optimal phenotype for any position along the

resource limitation gradient. The EFMs whose resource

costs were closest to the plot axes and their non-negative

linear combinations (e.g., solid black lines in Fig. 2) mini-

mize resource costs, making them ecologically competitive

(Carlson and Srienc, 2004). EFMs not on the curve repre-

sent suboptimal strategies for the simulated environment

(x symbols in Fig. 2). Abundance of suboptimal EFMs illus-

trates the metabolic robustness of the reaction network,

and EFMs near the tradeoff curve may have roles in meta-

bolic resilience, such as responding to resource or genetic

perturbations (circles in Fig. 2). Biological implications of

these specific suboptimal EFMs are discussed below.

Optimal utilisation of macromolecules

Approximately 50 million EFMs were enumerated during

the analysis of the 29 forms of DOC (Table 1). Every EFM

was analyzed for the resource cost to produce biomass or

cellular energy on gradients of DOC, oxygen or enzyme

resource limitation (Figs. 3–5). Only the optimal tradeoff

surfaces are presented for each form of DOC for clarity;

the total number of EFMs for each form of DOC and com-

mon associated byproducts are listed in Table 1. Tradeoff
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curves generated using either EFMA or FBA were general-

ly identical (Supporting Information).

Lipid required the fewest Cmoles of DOC to produce a

Cmole of heterotroph biomass or mole of cellular energy

and was therefore the best form of DOC for carbon-limited

environments relative to the other 28 forms of DOC (mov-

ing to left on x-axis in Fig. 3A and B). The lower DOC

resource cost for lipid was due primarily to the high degree

of reduction (six electrons per Cmole) (Table 1). After lipid,

the most competitive macromolecular DOC to produce a

Cmole of heterotroph biomass was aggregate biomass fol-

lowed by protein, cellobiose and lastly, RNA. The DOC

produced biomass or cellular energy at varying resource

costs due to (1) the degree of reduction of the DOC, which

is a gross measure of energy content, (2) chemical

structure of the DOC, which determines the entry point into

central metabolism relative to substrate-level phosphoryla-

tion reactions, (3) the elemental stoichiometry of the DOC

relative to heterotroph biomass and/or (4) the biological

accessibility of energy and nutrients in the DOC, which is

related to the number of enzymes required to process the

DOC. The ratio of Cmole DOC utilized per Cmole biomass

produced quantifies the fraction of autotroph-derived car-

bon assimilated into heterotroph biomass with the balance

dissimilated for cellular energy. This ratio establishes an

important conceptual constraint between different trophic

levels; at least 2.4 Cmoles of aggregate autotroph biomass

are required to produce 1 Cmole of heterotroph biomass.

RNA required the fewest moles of oxygen per Cmole

biomass or mole cellular energy produced among the

Table 1. Summary of simulations for 29 forms of biomass-derived DOC.

Carbon
source

Number
of EFMs Chemical formula

Degree of
reductiona

Nutrients
consumedb Byproducts

Biomass 14 994 531 CH1.6N0.2O0.4P0.02S0.005 4.27 (4.92) Acetate, Formate,

NH1
4 , HPO22

4 , H2S, H2O2

Cellobiose 794 557 C12H22O11 4.00 (4.00) HPO22
4 , NH1

4 , H2S Acetate, Formate,

Formaldehyde, H2O2

Archaeal Lipid 216 476 C86H170O12P2 5.86 (5.86) H2S,NH1
4 Acetate, Formate,

Formaldehyde, HPO22
4 , H2O2

Nucleotides

RNA

AMP

CMP

GMP

UMP

8 332 169

438 345

137 746

433 861

138 091

CHN0.4O0.8P0.1

C10H12N5O7P

C9H12N3O8P

C10H12N5O8P

C9H11N2O9P

2.91 (4.07)

3.00 (4.50)

3.33 (4.33)

2.80 (4.30)

3.33 (4.00)

H2S Acetate, Formate, NH1
4 , HPO22

4 , H2O2

Amino Acids

Protein

Ala

Arg

Asn

Asp

Cys

Glu

Gln

Gly

His

Ile

Leu

Lys

Met

Phe

Pro

Ser

Thr

Trp

Tyr

Val

303 907

85 822

8 721

116 017

92 836

117 743

12 408

14 202

100 664

16 487

79 510

88 657

38 383

118 907

55 714

15 419

104 376

60 396

165 116

56 065

30 653

CH1.6N0.3O0.3S0.006

C3H7NO2

C6H15N4O2

C4H8N2O3

C4H6NO4

C3H7NO2S

C5H8NO4

C5H10N2O3

C2H5NO2

C9H6N3O2

C6H13NO2

C6H13NO2

C6H15N2O2

C5H11NO2

C9H11NO2

C5H9NO2

C3H7NO3

C4H9NO3

C11H12N2O2

C9H11NO3

C5H11NO2

4.21 (5.01)

4.00 (5.00)

3.67 (5.67)

3.00 (4.50)

3.00 (3.75)

3.33 (4.33)

3.60 (4.20)

3.60 (4.80)

3.00 (4.50)

3.33 (4.83)

5.00 (5.50)

5.00 (5.50)

4.67 (5.67)

4.40 (5.00)

4.44 (4.78)

4.40 (5.00)

3.33 (4.33)

4.00 (4.75)

4.18 (4.73)

4.22 (4.56)

4.80 (5.40)

HPO22
4 Acetate, Formate, Formaldehyde,

H2O2, NH1
4 , H2S

Biomass production by heterotroph Geoarchaeum str. OSPB was evaluated using DOC ranging from monomers, to macromolecules, to aggre-
gate biomass derived from the autotroph M. yellowstonensis str. MK1.
a Degree of reduction was calculated on NH3(N2) bases.
b Nutrients consumed during biomass production.
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macromolecular DOC for simulated oxygen-limited condi-

tions (moving down y-axis in Fig. 3A and B). The low

requirement for oxygen was due to the low degree of

reduction of RNA and the fermentable pentose sugar back-

bone. Oxygen resource costs to produce biomass or

cellular energy increased for the other macromolecular

DOC in the following order: cellobiose, aggregate biomass,

protein and finally, lipid. Reduced carbon byproducts were

produced from most DOC as oxygen became more limiting

with acetate and formate being common (a complete list of

byproducts is available in Table 1). The metabolic model of

the heterotroph did not permit biomass or cellular energy

production under anoxic conditions for any considered

forms of DOC, which agrees with experimental observa-

tions (Beam et al., 2016).

Heterotroph biomass produced from protein required the

fewest enzymatic reactions, and by extension, the lowest

enzyme resource cost of all macromolecular DOC

Fig. 2. Summary of ecological resource utilisation theory used for quantifying competitive physiologies during utilisation of autotroph biomass
by the heterotroph, Geoarchaeum str. OSPB.

Resource costs (biomass-derived DOC, oxygen and enzymes) were calculated for every elementary flux mode (EFM) that synthesized

biomass or cellular energy. Biomass and cellular energy production costs are plotted for the carbon- versus oxygen-limited scenarios (A) and

(B), respectively. Biomass and cellular energy production costs are plotted for the carbon- versus enzyme-limited scenarios (C) and (D),

respectively. Linear combinations of the most efficient EFMs define an optimal tradeoff surface (line). EFMs plotted with circles represent

suboptimal ecologically competitive strategies that are phenotypically indistinguishable from the optimal strategies. These strategies ranged

from complete oxidation of DOC to acetate production (white and grey circles, respectively) in (A), (B) and (D), as well as energy production

(grey circles) in (C). EFMs plotted with an x are suboptimal and phenotypically distinct from the optimal strategies. Reactions used per EFM

are the number of reactions with a nonzero flux in each EFM, which is a proxy for the enzyme resource cost.
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considered. First, the protein macromolecule supplied all

20 common amino acids, which eliminated the need for

amino acid synthesis reactions; second, the amino acid

backbones were readily converted into central metabolism

intermediates such as 3-phosphoglycerate and acetyl-

CoA, which minimized the number of reactions involved in

carbon backbone processing. After protein, the macromo-

lecular DOC that minimized enzyme resource cost for

biomass production were: cellobiose, RNA, aggregate

biomass and finally, lipid (Fig. 3C). Heterotroph lipid

[digeranylfarnesyl glycerol phospholipid (Kozubal et al.,

2013)] was modelled as chemically distinct from autotroph

lipid [caldarchaeol diphosphate (Hopmans et al., 2000)];

therefore, utilisation of autotroph lipid required enzymes for

both degradation and reassembly to produce heterotroph

biomass.

Fig. 3. Analysis of macromolecule utilisation by the heterotroph Geoarchaeum str. OSPB.

Biomass-derived DOC includes aggregate biomass (black), archaeal lipid (grey), cellobiose (blue), protein (yellow) and RNA (orange). Biomass

and cellular energy production costs are plotted for the carbon- versus oxygen-limited scenarios (A) and (B), respectively. Biomass and cellular

energy production costs are plotted for the carbon- versus enzyme-limited scenarios (C) and (D), respectively. Reactions used per elementary

flux mode (EFM) are the number of reactions with a nonzero flux in each EFM, which is a proxy for the enzyme resource cost. Each tradeoff

curve was calculated assuming simultaneous use of the macromolecule monomers, when applicable. Results from the sequential use of

macromolecule monomers are highlighted with the circles in (A) and (B). For example, the solid yellow line in (A) outlines the tradeoff curve

when the amino acids in the protein macromolecule were utilized simultaneously to produce biomass. The left most position on the yellow

tradeoff curve represents the lowest DOC resource cost to produce biomass under carbon-limited conditions with its associated oxygen

resource cost. The yellow circle (A) represents the DOC and oxygen resource costs to produce the same Cmole of heterotroph biomass when

each amino acid is consumed sequentially; this simulation assumed all amino acids were metabolized without excretion.
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Cellular energy produced from cellobiose required the

fewest enzymatic steps among the macromolecular DOC

(Fig. 3D); all other macromolecules were degraded to mul-

tiple central metabolism precursors, requiring more

enzymatic reactions to produce cellular energy. Cellobiose

was followed by lipid, RNA, protein and then aggregate

biomass as the most cost effective macromolecular DOC

for cellular energy production with respect to enzyme

resource cost. Nitrogen, phosphorous and sulfur contain-

ing DOC produced noncarbon byproducts, including

ammonium, phosphate and sulfide when dissimilated to

produce cellular energy (Table 1).

Selective, optimal utilisation of monomers from
macromolecules

DOC simulations included both biomass-derived macro-

molecule and monomer pools enabling a comparison of

different metabolic strategies. Biomass and cellular energy

production from the RNA macromolecule and the four

RNA monomers (AMP, CMP, GMP and UMP) revealed dif-

ferences in DOC energy content and the biological

accessibility of the carbon backbones (Fig. 4). Biomass

and cellular energy production from the monomers CMP

and UMP had lower DOC resource costs than either the

Fig. 4. Analysis of RNA macromolecule and monomer utilisation by the heterotroph Geoarchaeum str.OSPB.

Biomass-derived DOC includes RNA macromolecule (black), AMP (orange), CMP (grey), GMP (yellow) and UMP (blue). Biomass and cellular

energy production costs are plotted for the carbon- versus oxygen-limited scenarios (A) and (B), respectively. Biomass and cellular energy

production costs are plotted for the carbon- versus enzyme-limited scenarios (C) and (D), respectively. Reactions used per elementary flux

mode (EFM) are the number of reactions with a nonzero flux in each EFM, which is a proxy for enzyme resource cost. UMP and CMP overlap

in (A) and (B).
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aggregate RNA macromolecule, AMP or GMP (Fig. 4A

and B); this was due to the higher degree of reduction and

the connectivity of the carbon backbones to central metab-

olism. The enzyme resource cost was higher for the RNA

macromolecule than any of the individual nucleotides

because four separate monomer degradation pathways

were necessary to generate central metabolism

intermediates.

The 20 amino acids have a variety of metabolic proper-

ties including different elemental compositions and

structures, which affected their potential use as substrates

(Table 1). Isoleucine and leucine had the lowest DOC

resource costs to produce both biomass and cellular ener-

gy compared to the protein macromolecule and other

amino acids (Fig. 5). This was due largely to the high

degree of reduction of these amino acids and the entry

points of the carbon backbones into central metabolism.

Serine had the lowest oxygen resource cost to produce

biomass of the amino acids, making it more competitive

than the protein macromolecule or any other amino acid

under oxygen-limited conditions. Serine and cysteine had

the lowest oxygen resource requirement for cellular energy

Fig. 5. Analysis of protein macromolecule and amino acid utilisation by the heterotroph Geoarchaeum str. OSPB.

Biomass-derived DOC includes protein macromolecule and individual amino acids. Biomass and cellular energy production costs are plotted

for the carbon- versus oxygen-limited scenarios (A) and (B), respectively. Biomass and cellular energy production costs are plotted for the

carbon- versus enzyme-limited scenarios (C) and (D), respectively. Reactions used per elementary flux mode (EFM) are the number of

reactions with a nonzero flux in each EFM, which is a proxy for enzyme resource cost. Only amino acids with optimal properties are plotted in

each subfigure; Supporting Information data contains the complete amino acid data set.
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production of the amino acids. The serine backbone enters

glycolysis at pyruvate, which can be converted to acetate,

carbon dioxide and cellular energy using only a few enzy-

matic reactions including substrate-level phosphorylation.

Moreover, acetate can be secreted, which removes reduc-

ing equivalents that would otherwise require oxygen. The

enzyme resource costs to produce cellular energy from

amino acids were a function of the carbon backbone (Fig.

5C and D). Structurally simpler amino acids, such as gluta-

mate and aspartate, could be integrated into central

metabolism with fewer enzymatic reactions than cyclic or

aromatic amino acids, such as phenylalanine, which

required longer and more specialized enzymatic pathways.

A similar trend was observed for biomass production, with

the exception of histidine and arginine. Degradation of his-

tidine and arginine required fewer enzymatic reactions

than their synthesis (Supporting Information); this differen-

tial made the DOC ideal for minimizing enzyme resource

costs to produce biomass.

Simultaneous versus sequential metabolism of monomer

pools

Biomass utilisation strategies were examined as two meta-

bolic scenarios: simultaneous and sequential DOC

metabolism (Fig. 1C). Differences in the two metabolic

strategies were exemplified by comparing the metabolism

of the protein macromolecule to the sequential utilisation of

each amino acid (Fig. 3). The sequential metabolism was

quantified via nonnegative linear combinations of optimal

EFMs for each amino acid (Tables 2 and 3). Sequential

metabolism of individual amino acids had higher DOC and

oxygen resource costs to produce biomass than the simul-

taneous metabolism of the amino acids (Fig. 3A).

Sequential consumption necessitated more metabolic

processing; each amino acid had to be converted into the

other 19 amino acids as well as the other biomass compo-

nents. The added metabolic processing consumed more

cellular energy and reducing equivalents and produced

Table 2. Resource costs of heterotroph Geoarchaeum str. OSPB biomass production from the 29 analyzed biomass-derived DOC pools.

Carbon-limited costs Oxygen-limited costs Enzyme-limited costs

DOC
per biomass

Oxygen
per biomass

Oxygen
per biomass

DOC per
biomass

Fewest reactions
used per EFM

DOC per
biomass

LIP 2.06 1.94 UMP 1.01 4.89 His 173 3.70

Ile 2.17 1.64 CMP 1.01 4.90 Arg 177 3.20

Leu 2.25 1.74 Ser 1.02 7.68 PEP 178 3.73

Val 2.30 1.69 Cys 1.03 8.01 Gly 180 6.65

Pro 2.38 1.54 RNA 1.12 5.39 Ser 180 7.68

BIO 2.44 1.57 CEL 1.19 4.62 Cys 181 8.25

PEP 2.58 1.65 Asn 1.27 6.30 Pro 182 2.67

CEL 2.60 1.53 Asp 1.28 6.33 Gln 182 3.64

Ala 2.66 1.59 Ala 1.28 4.75 Glu 182 3.66

Met 2.75 2.23 GMP 1.33 6.71 Ala 182 4.88

Lys 2.84 2.24 Leu 1.34 4.86 Asn 182 6.48

Arg 2.84 1.54 AMP 1.36 5.70 Asp 182 6.51

Thr 2.86 1.79 Gly 1.40 6.54 UMP 183 3.67

Gln 2.91 1.55 Gln 1.46 3.45 CEL 183 4.57

Glu 2.92 1.56 His 1.47 4.16 Leu 184 2.29

UMP 2.94 1.38 Glu 1.47 3.47 Thr 184 4.17

CMP 2.94 1.38 BIO 1.47 3.79 Met 186 3.26

RNA 3.14 1.44 Ile 1.50 3.02 Lys 187 2.89

His 3.14 1.54 Arg 1.51 3.03 Ile 188 2.65

Ser 3.16 1.56 Pro 1.51 2.54 Trp 188 4.12

Cys 3.21 1.61 PEP 1.58 3.89 Val 190 2.35

AMP 3.33 1.59 Val 1.67 2.46 CMP 190 3.68

Trp 3.35 2.43 Thr 1.72 3.96 GMP 190 4.58

Asn 3.53 1.58 LIP 1.92 2.89 Tyr 190 6.51

Asp 3.55 1.59 Met 2.23 2.75 Phe 190 7.85

GMP 3.57 1.61 Lys 2.24 2.84 AMP 191 4.60

Gly 3.62 1.64 Trp 2.43 3.35 RNA 192 4.28

Tyr 3.76 2.90 Tyr 2.90 3.76 BIO 200 2.76

Phe 4.04 3.42 Phe 3.42 4.04 LIP 201 4.66

DOC is ordered from low to high biomass production costs for the three examined nutrient limitations.
Biomass production costs utilizing biomass (BIO), archaeal lipid (LIP), cellobiose (CEL), a representative protein (PEP) and a representative
distribution of nucleotides (RNA).
Nucleotides and amino acids are labeled using standard biochemical conventions.
Units are Cmoles DOC consumed, Cmoles biomass produced and moles oxygen consumed.
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more carbon byproducts, which increased the DOC

resource cost to produce biomass.

Simultaneous versus sequential DOC consumption had

no effect on cellular energy production (Fig. 3B). Cellular

energy production exclusively harvests energy from the

DOC, while biomass production uses DOC to produce

both biomass components and cellular energy. This prop-

erty resulted in nonlinear relationships between different

forms of DOC for biomass but not cellular energy

production.

Identification of suboptimal metabolic strategies

Resource allocation theory identified optimal strategies for

biomass and cellular energy production along continuous

gradients of resource limitations. However, this does not

capture the total robustness of the metabolic network.

EFMA enumerated all mathematically possible

biochemical pathways including optimal and suboptimal

strategies. The suboptimal strategies can be biologically

significant because they create metabolic redundancy and

buffer against perturbations (Mahadevan and Lovley,

2008). The analysis of suboptimal strategies considered

EFMs with biomass yields within 0.5% of the optimal trade-

off surface as phenotypically indistinguishable and were

therefore part of the tradeoff surface. The 0.5% threshold

value was set based on experimental observations

(Dykhuizen and Hartl, 1980). Analysis of suboptimal bio-

mass production strategies expanded the relevant number

of EFMs along the DOC versus oxygen tradeoff curve from

3 to 2073 for aggregate biomass utilisation (Fig. 2) while it

had no effect on the four EFMs considered on the cellobi-

ose utilisation tradeoff curve.

The serine–glycine pathway is an example of an identi-

fied suboptimal metabolic strategy with competitive

properties (Fig. 2). The serine–glycine pathway uses

Table 3. Resource costs of heterotroph Geoarchaeum str. OSPB cellular energy production from the 29 analyzed biomass-derived DOC pools.

Carbon-limited costs Oxygen-limited costs Enzyme-limited costs

DOC
per energy

Oxygen
per energy

Oxygen
per energy

DOC
per energy

Fewest
reactions used
per EFM

DOC
per energy

LIP 0.270 0.395 Cys 0.230 1.382 Gly 15 0.480

Ile 0.283 0.354 Ser 0.230 1.382 Ser 16 0.418

Leu 0.283 0.354 CMP 0.238 0.857 Ala 17 0.817

Val 0.300 0.360 UMP 0.238 0.857 Cys 17 1.382

Pro 0.309 0.340 Leu 0.243 0.972 Leu 19 0.972

CEL 0.343 0.343 RNA 0.261 0.954 Asp 20 1.090

Ala 0.346 0.346 CEL 0.267 0.800 Glu 21 0.612

BIO 0.347 0.376 Ala 0.272 0.817 Gln 21 0.612

Lys 0.360 0.420 Asn 0.272 1.090 Pro 23 0.448

PEP 0.362 0.381 Asp 0.272 1.090 His 23 0.620

Met 0.366 0.439 GMP 0.294 1.176 Asn 23 1.090

Arg 0.371 0.340 Gly 0.299 1.198 Thr 24 0.705

Thr 0.375 0.375 AMP 0.300 1.000 Lys 24 0.900

Glu 0.380 0.342 Gln 0.306 0.612 CEL 25 0.800

Gln 0.380 0.342 His 0.306 0.734 Arg 26 0.537

UMP 0.391 0.326 Glu 0.306 0.612 Val 29 0.319

CMP 0.391 0.326 Arg 0.313 0.537 Ile 29 0.537

His 0.409 0.341 Pro 0.313 0.448 Met 30 0.882

Ser 0.418 0.349 Ile 0.313 0.537 Trp 31 1.082

Cys 0.418 0.349 Val 0.343 0.428 Tyr 31 1.102

RNA 0.421 0.339 BIO 0.351 0.707 Phe 34 1.349

Trp 0.437 0.457 Thr 0.353 0.705 UMP 41 0.545

AMP 0.444 0.356 PEP 0.362 0.734 CMP 42 0.545

Asp 0.461 0.346 LIP 0.391 0.509 GMP 46 0.513

Asn 0.461 0.346 Lys 0.420 0.360 AMP 47 0.476

GMP 0.476 0.357 Met 0.439 0.366 LIP 54 0.509

Gly 0.480 0.360 Trp 0.457 0.437 RNA 63 0.523

Tyr 0.495 0.523 Tyr 0.523 0.495 PEP 111 0.483

Phe 0.540 0.600 Phe 0.600 0.540 BIO 170 0.448

DOC is ordered from low to high cellular energy production costs for the three examined nutrient limitations.
Energy production costs utilizing biomass (BIO), archaeal lipid (LIP), cellobiose (CEL), a representative protein (PEP), and a representative
distribution of nucleotides (RNA).
Nucleotides and amino acids are labeled using standard biochemical conventions.
Units are Cmoles DOC consumed, moles energy produced and moles oxygen consumed.
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serine and glycine synthesis reactions along with the gly-

cine cleavage system to oxidize DOC (Supporting

Information Fig. S2). This pathway permits complete oxida-

tion of DOC, but requires fewer enzymatic steps than the

TCA cycle, potentially making it competitive in enzyme-

limited environments. However, fewer substrate-level phos-

phorylation reactions occurred in this pathway, which

increased DOC resource cost. In the case of aggregate

biomass utilisation to produce biomass, the serine–glycine

pathway is suboptimal on the enzyme resource plots,

though it is optimal for some forms of DOC, such as cello-

biose. Additionally, the serine–glycine pathway provides

flexibility in response to oxygen limitation. In the presence

of sufficient oxygen, the pathway can completely oxidize

DOC to maximize cellular energy production. Alternatively,

under oxygen limitation, formate produced when regener-

ating tetrahydrofolate can be excreted to lower the

requirement for oxygen. Consequently, results from EFMA

analysis provide a theoretical foundation for understanding

and/or predicting effects of different electron acceptor

costs on microbial community response.

Discussion

Nutrient and energy transfer across trophic levels during

assimilatory and dissimilatory biomass utilisation is funda-

mental to most ecosystems. Heterotrophic utilisation of

reduced carbon constituents produced by autotrophs can

occur as a result of metabolite exchange, predation (e.g.,

viral lysis) and/or decomposition. The presented work

focused on decomposition of autotroph biomass and

established quantitative relationships between community

members. For example, a minimum of 2.4 Cmoles of auto-

troph biomass is required to synthesize 1 Cmole of

heterotroph biomass. The exchange of metabolites is also

common both within and across trophic levels (Walker

et al., 2012; Morris et al., 2013). Rational analysis of these

synergistic exchanges requires a numerical basis. The val-

ue of exchanged DOC can be quantified in terms of the

amount of biomass or cellular energy that can be produced

from it (e.g., Tables 2 and 3). For instance, the amino acid

isoleucine can be oxidized to produce 3.5 moles of cellular

energy per Cmole, while phenylalanine can be oxidized to

produce 1.9 moles of cellular energy per Cmole (Table 3).

The presented study provides a quantitative foundation for

analyzing metabolite exchange within microbial

communities.

Stoichiometric modelling is well suited for analyzing

complex systems such as metabolism and can quantify

the extremes of cellular physiology without knowledge of

substrate concentrations or specific enzyme parameters;

this is a major strength of the modelling technique. Cellular

phenotypes over the continuum of specific growth rates

can be modelled using linear combinations of the EFMs at

fast and slow growth rates, namely the EFMs that produce

only biomass and only cellular energy, respectively. In this

study, the modelled biomass production assumes a rela-

tively high specific growth rate (0.1 h21) and therefore, the

majority of substrate is directed towards synthesizing bio-

mass components and not towards cell maintenance (3.5

moles cellular energy per Cmole biomass). Conversely, at

slow specific growth rates, most of the cellular activity is

directed towards cell maintenance; these phenotypes are

represented in the cellular energy plots (e.g., Fig. 2B and

C). Combinations of these two scenarios can be used to

approximate any phenotype between the two extremes.

Stoichiometric modelling does not automatically account

for enzyme affinities and therefore accounting for low sub-

strate concentrations and the expression of high affinity

transporters would need to be implemented manually; the

additional energetic requirements for a high affinity trans-

porter versus a low affinity transporter has been detailed

previously (Carlson, 2007). In theory, strategies that only

produce cellular energy could describe the ultimate low

nutrient environments found in the deep subsurface, where

biomass doubling times on the order of 1022104 years

have been estimated (Hoehler and Jørgensen, 2013).

DOC utilisation when multiple forms are present was

bounded by two scenarios, simultaneous and sequential

metabolism. These results can be used to study microbial

growth at either high or low DOC concentrations. Many

experimental studies have examined sequential metabo-

lism of simple carbohydrates and organic acids, often

termed catabolite repression or diauxic growth (Wolfe,

2005; Deutscher, 2008; G€orke and St€ulke, 2008). Sequen-

tial metabolism is competitive at high DOC concentrations

where use of a single form of DOC can saturate the activity

of a minimal enzyme investment and drive high growth

rates. At low DOC concentrations, such as those found in

most natural environments including the studied mat sys-

tem, simultaneous metabolism of multiple forms of DOC is

observed. This strategy requires more investment into deg-

radation pathways, but is necessary to maximize growth

rate (Kovarova-Kovar and Egli, 1998).

The presented study establishes a foundation for the

evaluation of biomass utilisation by heterotrophs; additional

complexity could be integrated during future work. Utilisa-

tion of complex DOC mixtures is common in natural

environments and is constrained by bioavailability (e.g.,

solubility and polymer hydrolysis), DOC transport into a

cell and the necessary degradation pathways (Kovarova-

Kovar and Egli, 1998). The solubility of DOC was not

explicitly considered here, and could confound the pre-

dicted optimality of some forms of DOC, such as lipids

which have lower solubilities (�5 mg l21) than most other

DOC constituents. A review of relevant DOC solubility can

be found in the Supporting Information (see Table S1).

Currently, all DOC is transported and hydrolyzed via a
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single macromolecule-specific mechanism (see Materials

and Methods). While this permits equitable comparisons

across simulations for simultaneous and sequential metab-

olism, it also highlights scientific knowledge gaps

associated with enzyme specificity and enzyme resource

costs of transport and hydrolysis reactions. Many microor-

ganisms have multiple transporters for the same molecule

(e.g., low affinity versus high affinity transporters) or same

class of molecules (e.g., glucose vs. glucose oligomer

transporters), which can influence phenotype (Zhang and

Lynd, 2005). Another simplification made in the current

study was the complete utilisation of a metabolite pool

(e.g., all amino acids in the protein macromolecule) as

compared to the selective use of optimal monomers (e.g.,

metabolism of alanine combined with the secretion of phe-

nylalanine) or the selective use of components from a

complex molecule (e.g., metabolism of the ribose unit in an

RNA nucleotide with the secretion of the recalcitrant aro-

matic base). Wastewater and sediment studies have

commonly shown that recalcitrant molecules like aromatic

amino acids are often utilized last (Crawford et al., 1974;

Tegelaar et al., 1989; Arndt et al., 2013). Finally, the broad

applicability of the presented approach was demonstrated

by applying the theory to an ecosystem with extensive

DOC utilisation data. The analysis compares theoretical

and experimentally measured utilisation of amino acids

within a eutrophic marine ecosystem (presented in the

Supporting Information). The experimental measurements

were predicted with remarkable accuracy using the oxygen

limited acclimation strategies presented in this study

highlighting how basic physiological concepts can be

applied to many different ecosystems.

This in silico systems biology study quantified assimila-

tory and dissimilatory biomass utilisation by an aerobic

heterotrophic archaeon, Geoarchaeum str. OSPB. The

study provided a metabolic basis for comparing optimal

DOC utilisation patterns under different nutrient-limiting

conditions, evaluating simultaneous versus sequential

DOC metabolism and investigating byproducts secreted

during simulated growth and cellular energy production.

These relationships describe limits for community interac-

tions between an autotroph and a heterotroph, such as the

amount and type of autotrophic biomass needed to sustain

the community. The novel approaches and findings of this

study are applicable to a wide range of microbial

ecosystems.

Materials and methods

Metabolic model construction

The Geoarchaeum str. OSPB (NCBI taxon ID 1448933)

genome sequence (Markowitz et al., 2012), which has been

assembled from metagenomes of iron oxide mats sampled

from One Hundred Springs Plain (Kozubal et al., 2013), was

used to build the in silico heterotroph metabolic network.

Incorporation of enzyme-catalyzed reactions into the model
was based on protein homology (greater than 30% identity)

and gene annotations. Due to the incomplete nature of meta-

genome assemblies, missing genes were modelled as
present, when necessary, using genes found in other archaea

(Huson et al., 2007). The metabolic model of Geoarchaeum

str. OSPB exhibits typical heterotrophic archaeal central car-
bon metabolism (e.g., TCA cycle, archaeal glycolysis/

gluconeogenesis and electron transport) and common biosyn-

thetic and degradation pathways. The model did not predict
auxotrophy for any of the major biomass components (i.e.,

amino acids or nucleotides). Acetate, formate and formalde-

hyde were the only reduced carbon byproducts considered in

the model, based on gene annotation. No genes were identi-
fied to support the inclusion of other reduced carbon

byproducts. Enzyme resource costs accounted for the number

of enzymes in the manually compressed reactions, with the
exception of transporters and degradation enzymes (Support-

ing Information).

Macromolecules and monomers were not allowed to be

excreted by the heterotroph due to EFMA computational
explosion. Peptides were assumed to be transported actively

using an ABC transporter for trimeric peptides and depolymer-

ized independent of cellular energy. RNA was transported and

depolymerized in a cellular energy neutral reaction. Cellobiose
was assumed to be transported actively using an ABC trans-

porter and depolymerized independent of cellular energy, but

required phosphorylation to enter central metabolism. Archae-
al lipid was assumed to be transported actively using an ABC

transporter and required complete degradation to monomers

before polymerisation into heterotroph biomass. Monomers
were transported and degraded as homopolymers to avoid

biases associated with differences in transport costs of poly-

mers and oligomers.

Heterotroph biomass production

The heterotroph biomass production reactions were devel-
oped using macromolecular ratios as previously described

(Neidhardt et al., 1990), tailoring amino acid and nucleotide

distributions to organism-specific genome data (Supporting
Information). The amino acid distribution was determined

using the average distribution of all open reading frames in the

de novo assembly of Geoarchaeum str. OSPB from the meta-

genome. The nucleotide distribution of RNA was represented
by the weighted average nucleotide distribution of major rRNA

subunits (i.e., 16S and 23S); rRNA pools are the largest frac-

tion of RNA in the cell [e.g., approximately 80% in E. coli
(Neidhardt et al., 1990)]. Autotroph lipid was represented by

ether-linked digeranylfarnesyl glycerol phospholipid (Hopmans

et al., 2000). Polysaccharide was represented by cellobiose.
The maintenance energy was set based on glucose utilisation

by Alicyclobacillus acidocaldarius DSM 446, a thermoacido-

philic gram-positive bacterium, grown at a pH and
temperature of 4.3�C and 51�C, respectively (Farrand et al.,

1983). The maintenance energy requirements were deter-

mined assuming the use of a cytochrome bd oxidase, which
resulted in 1 proton translocated per electron, because a cyto-

chrome c oxidase system, which resulted in 2 protons

translocated per electron, resulted in uncharacteristically high
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maintenance energies (i.e., 3.5 vs. 5 moles cellular energy per

Cmole biomass or 150 vs. 215 mmoles cellular energy per g

cell dry weight for a cytochrome bd oxidase versus cyto-

chrome c oxidase, respectively, at a growth rate of 0.1 h21).

One mole of cellular energy was modelled as one mole of

phosphodiester bonds broken. EFMs using cytochrome c oxi-

dase were subsequently separated from EFMs using

cytochrome bd oxidase in the primary analysis for clarity as all

trends are similar, but scaled by the difference in protons

transferred per oxygen respired (Supporting Information).

Stoichiometric analyses

Model reactions and metabolites were assembled using

Microsoft Excel, transferred to CellNetAnalyzer version

2014.1 (Klamt et al., 2007; Klamt and von Kamp, 2011) for

formatting, and exported to RegEFMTool version 2.0

(Jungreuthmayer et al., 2013) for EFM enumeration. Gene

regulatory rules mutually excluding cyclic reactions were incor-

porated with RegEFMTool to minimize futile cycles and

validated against network subsets analyzed with EFMTool ver-

sion 4.7.1 (Terzer, 2006; Terzer and Stelling, 2008) without

regulatory rules (Supporting Information). ‘Metabolic check

valves’ (i.e., pseudo-metabolites and irreversible reactions)

were used in addition to gene regulatory rules to minimize

futile cycling of nucleotides, which are often involved in reac-

tions as coenzymes (Supporting Information). FBA-based

resource costs were calculated from the doubleRobustnessA-

nalysis function of COBRA Toolbox (Schellenberger et al.,

2011) on the model exported using the CNA2Cobra function

of CellNetAnalyzer. The resulting output was converted to

resource costs by normalizing to either the specific growth

rate or the specific cellular energy production rate, and com-

pared to resource cost tradeoff curves produced from EFMs

(Supporting Information). An example of model construction,

EFMA and resource costs is available in the Supporting Infor-

mation (Fig. S1). A general maintenance energy of 3.5 moles

cellular energy per Cmole of biomass was held constant for all

simulations, which included contributions from growth and

nongrowth associated maintenance energy at a growth rate of

0.1 h21. Computations were performed on a machine with two

X5690 Intel Xeon processors and 120 GB of RAM.
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Additional Supporting Information may be found in the

online version of this article at the publisher’s web-site:

Fig. S1. Summary of metabolic model building, stoichiomet-

ric analysis and application of ecological theory. (A) The

metabolic model is a compilation of genomic annotations

from databases, experimental yields and efficiencies

reported in the literature, and hypothesized reactions.

Hypothesized reactions include those missing from annota-

tions, but expected due to literature data (i.e., an organism

that grows on a mineral medium has complete biosynthetic

pathways). (B) The model is represented as a series of

reaction equations correlating the consumed metabolites

and the produced metabolites (i.e., Ri, where i corresponds

to the reaction number and is written in terms of metabo-

lites A, B and C; W, X, Y and Z are sources and sinks). The

reaction equations can be written concisely as a mathemati-

cal matrix, positive coefficients are reaction products and

negative coefficients are reaction substrates. (C) These

reaction equations are analyzed to identify metabolic routes

through the network that are stoichiometrically balanced

(i.e., all metabolites produced must be consumed and vice

versa) and all reactions are limited to directions permitted

by chemical thermodynamics. In flux balance analysis

(FBA), these routes must also satisfy an objective function

(e.g., maximize flux through R6 while constraining the mag-
nitude of flux through reactions R1 and R2). Elementary
flux mode (EFM) analysis finds all of the simplest, geneti-
cally distinct routes through the network (i.e., the five possi-
ble EFMs (color coded) for the sample metabolic model).

(D) Application of ecological theory to the analysis of these
routes predicts competitive metabolic behaviour. The theory
assumes the reactions used to produce the desired product
(e.g., biomass or cellular energy) will minimize the resource
cost for the limiting nutrient (e.g., carbon, oxygen or cellular

volume). In the context of the depicted example, if W is lim-
iting and a population must produce Z, theory states the
optimal strategy would be along the x-axis (plot to the left).
Conversely, limitation of X to produce Z would be along the

y-axis (plot to the left). In addition, alternative products may
favour alternative metabolic strategies (e.g., production of Y
in the plot to the right). Additional review articles on stoi-
chiometric modelling: (Price et al., 2004; Feist et al., 2009;
Trinh et al., 2009; Beck et al., 2016).

Fig. S2. Graphical representation of the serine–glycine
pathway and tetrahydrolate regeneration. The net pathway
of serine–glycine and tetrahydrofolate regeneration results
in formate and reducing equivalents. If the formate pro-
duced is then oxidized, the net result is electronically identi-

cal to complete oxidation through the tricarboxylic acid
cycle but uses fewer enzymes.
Fig. S3. Correlation of theoretical amino acid carbon
resource cost (Cmol amino acid consumed/Cmol biomass
or cellular energy produced) and experimental volumetric

amino acid consumption rate. Carbon resource costs to
produce cellular energy (Cmol amino acid/mol cellular ener-
gy) (left) and biomass (Cmol amino acid/Cmol biomass)
(right) under carbon- (A), oxygen- (B) or enzyme-limited

conditions (C) are shown for all amino acids except aspara-
gine, cysteine, glutamine, histidine and tryptophan, which
were not measured. Volumetric consumption rates are the
average consumption rates calculated from (Crawford et al.,
1974). Error bars are standard error of measurements for

up to 12 measurements.
Table S1. Solubilities of common forms of dissolved organic
carbon at 25�C.
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